1. McDonald WM, Richard IH, DeLong MR. Prevalence, etiology, and treatment of depression in Parkinson’s disease. Biol Psychiatry. 2003; 54: 363-375. doi: 10.1016/S0006-3223(03)00530-4
2. Moore DJ, West AB, Dawson VL, Dawson TM. Molecular pathophysiology of Parkinson’s disease. Annu Rev Neurosci. 2005; 28: 57-87. doi: 10.1146/annurev.neuro.28.061604.135718
3. Jankovic J. Parkinson’s disease: Clinical features and diagnosis. J Neurol Neurosurg Psychiatry. 2008; 79: 368-376. doi: 10.1136/jnnp.2007.131045
4. Mattila PM, Rinne JO, Helenius H, et al. Alpha-synuclein-immunoreactive cortical Lewy bodies are associated with cognitive impairment in Parkinson’s disease. Acta Neuropathol (Berl). 2000; 100: 285-290. doi: 10.1007/s004019900168
5. Warner TT, Schapira AH. Genetic and environmental factors in the cause of Parkinson’s disease. Ann Neurol. 2003; 53. doi: 10.1002/ana.10487
6. Peng J, Mao XO, Stevenson FF, Hsu M, Andersen JK. The herbicide paraquat induces dopaminergic nigral apoptosis through sustained activation of the JNK pathway. J Biol Chem. 2004; 279: 32626-32632. doi: 10.1074/jbc.M404596200
7. Alder T. Pesticides and Parkinson’s disease: The legacy of contaminated well water. Environ Health Perspect. 2009: 117: A553. doi: 10.1289%2Fehp.117-a553a
8. Ballard PA, Tetrud JW, Langston JW. Permanent human parkinsonism due to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): Seven cases. Neurology. 1985; 35: 949-956. doi: 10.1212/wnl.35.7.949
9. Costello S, Cockburn M, Bronstein J, Zhang X, Ritz B. Parkinson’s disease and residential exposure to maneb and paraquat from agricultural applications in the central valley of California. Am J Epidemol. 2009; 169: 191-26. doi: 10.1093/aje/kwp006
10. Dhillon AS, Tarbutton GL, Levin JL, et al. Pesticide/environmental exposures and Parkinson’s disease in East Texas. J Agromedicine. 2008; 13: 37-48. doi: 10.1080/10599240801986215
11. Firestone JA, Smith-Weller T, Franklin G, Swanson P, Longstreth WT Jr, Checkoway H. Pesticides and risk of Parkinson disease: A population-based case-control study. Arch Neurol. 2005; 62: 91-95. doi: 10.1001/archneur.62.1.91
12. Freire C, Koifman S. Pesticide exposure and Parkinson’s disease: Epidemiological evidence of association. Neurotoxicology. 2012; 33: 947-971. doi: 10.1016/j.neuro.2012.05.011
13. Brown TP, Rumsby PC, Capleton AC, Rushton L, Levy LS. Pesticides and Parkinson’s disease-is there a link? Environ Health Perspect. 2006; 114: 156-164. doi: 10.1289/ehp.8095
14. Searles Nielsen S, Hu SC, et al. Parkinsonism Signs and Symptoms in Agricultural Pesticide Handlers in Washington State. J Agromedicine. 2017; 22: 215-221. doi: 10.1080/1059924X.2017.1317684
15. Przedborski S, Vila M. The 1-Methyl-4-Phenyl-1, 2, 3, 6-Tetrahydropyridine Mouse Model. Ann N Y Acad Sci. 2003; 991: 189-198. doi: 10.1111/j.1749-6632.2003.tb07476.x
16. Surmeier DJ, Schumacker PT. Calcium, bioenergetics, and neuronal vulnerability in Parkinson’s disease. J Biol Chem. 2013; 288: 10736-10741. doi: 10.1074/jbc.R112.410530
17. Hoang T, Choi DK, Nagai M, et al. Neuronal NOS and cyclooxygenase-2 contribute to DNA damage in a mouse model of Parkinson disease. Free Radic Biol Med. 2009; 47: 1049-1056. doi: 10.1016/j.freeradbiomed.2009.07.013
18. Lee DH, Kim CS, Lee YJ. Astaxanthin protects against MPTP/MPP+-induced mitochondrial dysfunction and ROS production in vivo and in vitro. Food Chem Toxicol. 2011; 49: 271-280. doi: 10.1016/j.fct.2010.10.029
19. Dehmer T, Lindenau J, Haid S, et al. Deficiency of inducible nitric oxide synthase protects against MPTP toxicity in vivo. J Neurochem. 2000; 74: 2213-2216. doi: 10.1046/j.1471-4159.2000.0742213.x
20. Blandini F, Armentero MT, Martignoni E. The 6-hydroxydopamine model: News from the past. Parkinsonism Relat Disord. 2008; 14: S124-S129. doi: 10.1016/j.parkreldis.2008.04.015
21. Guo S, Bezard E, Zhao B. Protective effect of green tea polyphenols on the SH-SY5Y cells against 6-OHDA induced apoptosis through ROS-NO pathway. Free Radic Biol Med. 2005; 39: 682-695. doi: 10.1016/j.freeradbiomed.2005.04.022
22. Iancu R, Mohapel P, Brundin P, Paul G. Behavioral characterization of a unilateral 6-OHDA-lesion model of Parkinson’s disease in mice. Behav Brain Res. 2005; 162: 1-10. doi: 10.1016/j.bbr.2005.02.023
23. Betarbet R, Sherer TB, MacKenzie G, et al. Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci. 2000; 3: 1301-1306. doi: 10.1038/81834
24. Iancu R, Mohapel P, Brundin P, Paul G. Behavioral characterization of a unilateral 6-OHDA-lesion model of Parkinson’s disease in mice. Behav Brain Res. 2005; 162: 1-10. doi: 10.1016/j.bbr.2005.02.023
25. Sherer TB, Kim JH, Betarbet R, Greenamyre JT. Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and alpha-synuclein aggregation. Exp Neurol. 2003; 179: 9-16. doi: 10.1006/exnr.2002.8072
26. Jenner P. Parkinson’s disease, pesticides and mitochondrial dysfunction. Trends Neurosci. 2001; 24: 245-246. doi: 10.1016/S0166-2236(00)01789-6
27. Cannon JR, Tapias V, Na HM, et al. A highly reproducible rotenone model of Parkinson’s disease. Neurobiol Dis. 2009; 34: 279-290. doi: 10.1016/j.nbd.2009.01.016
28. Holinger GU, Lannuzel A, Khondiker ME, et al. The mitochondrial complex I inhibitor rotenone triggers a cerebral tauopathy. J Neurochem. 2005; 95: 930-939. doi: 10.1111/j.1471-4159.2005.03493.x
29. Johnson ME, Bobrovskaya L. An update on the rotenone models of Parkinson’s disease: Their ability to reproduce the features of clinical disease and model gene-envirnment interactions. Neurotoxicology. 2015; 46: 101-116. doi: 10.1016/j.neuro.2014.12.002
30. Santiago RM, Barbieiro J, Lima MM, Dombrowski PA, Andreatini R, Vital MABF. Depressive-like behaviors alterations induced by intranigral MPTP, 6-OHDA, LPS and rotenone models of Parkinson’s disease are predominantly associated with serotonin and dopamine. Prog Neuropsychopharmacol Biol Psychiatry. 2010; 34: 1104-1114. doi: 10.1016/j.pnpbp.2010.06.004
31. Kaur H, Chauhan S, Sandhir R. Protective effect of lycopene on oxidative stress and cognitive decline in rotenone induced model of Parkinson’s disease. Neurochem Res. 2011; 36: 1435-1443. doi: 10.1007/s11064-011-0469-3
32. Gokul K, Muralidhara. Oral supplements of aqueous extract of tomato seeds alleviate motor abnormality, oxidative impairments and neurotoxicity induced by rotenone in mice: Relevance to Parkinson’s disease. Neurochem Res. 2014; 39: 1382-1394. doi: 10.1007/s11064-014-1323-1
33. Anusha C, Sumathi T, Joseph LD. Protective role of apigenin on rotenone induced rat model of Parkinson’s disease: Suppression of neuroinflammation and oxidative stress mediated apoptosis. Chem Biol Interact. 2017; 269: 67-79. doi: 10.1016/j.cbi.2017.03.016
34. Prakash J, Yadav SK, Chouhan S, Singh SP. Neuroprotective role of Withania somnifera root extract in Maneb-Paraquat induced mouse model of parkinsonism. Neurochem Res. 2013; 38: 972-980. doi: 10.1007/s11064-013-1005-4
35. Shimizu, K. Ohtaki K, Matsubara K, et al. Carrier-mediated processes in blood-brain barrier penetration and neural uptake of paraquat. Brain Res. 2001; 906: 135-142. doi: 10.1016/S0006-8993(01)02577-X
36. McCormack AL, Thiruchelvam M, Manning-Bog AB, et al. Environmental risk factors and Parkinson’s disease: Selective degeneration of nigral dopaminergic neurons caused by the herbicide paraquat. Neurobiol Dis. 2002; 10: 119-127. doi: 10.1006/nbdi.2002.0507
37. Fei Q, McCormack AL, Di Monte DA, Ethell DW. Paraquat neurotoxicity is mediated by a Bak-dependent mechanism. J Biol Chem. 2008; 283: 3357-3364. doi: 10.1074/jbc.M708451200
38. Dinis-Oliveira RJ, Remiao F, Carmo H, et al. Paraquat exposure as an etiological factor of Parkinson’s disease. Neurotoxicology. 2006; 27: 1110-1122. doi: 10.1016/j.neuro.2006.05.012
39. Czerniczyniec A, Karadayian AG, Bustamante J, Cutrera RA, Lores-Arnaiz S. Paraquat induces behavioral changes and cortical and striatal mitochondrial dysfunction. Free Radic Biol Med. 2011; 51: 1428-1436. doi: 10.1016/j.freeradbiomed.2011.06.034
40. Litteljohn D, Mangano EN, Hayley S. Cyclooxygenase-2 deficiency modifies the neurochemical effects, motor impairment and co-morbid anxiety provoked by paraquat administration in mice. Eur J Neurosci. 2008; 28: 707-716. doi: 10.1111/j.1460-9568.2008.06371.x
41. Nuti A, Ceravolo R, Piccinni A, et al. Psychiatric comorbidity in a population of Parkinson’s disease patients. Eur J Neurol. 2004; 11: 315-320. doi: 10.1111/j.1468-1331.2004.00781.x
42. Hosamani R, Krishna G, Muralidhara. Standardized Bacopa monnieri extract ameliorates acute paraquat-induced oxidative stress, and neurotoxicity in prepubertal mice brain. Nutr Neurosci. 2016; 19: 434-446. doi: 10.1179/1476830514Y.0000000149
43. Singh M, Murthy V, Ramassamy C. Neuroprotective mechanisms of the standardized extract of Bacopa monniera in a paraquat/diquat-mediated acute toxicity. Neurochem Int. 2013; 62: 530-539. doi: 10.1016/j.neuint.2013.01.030
44. Mangano EN, Peters S, Litteljohn D, et al. Granulocyte macrophage-colony stimulating factor protects against substantia nigra dopaminergic cell loss in an environmental toxin model of Parkinson’s disease. Neurobiol Dis. 2011; 43: 99-112. doi: 10.1016/j.nbd.2011.02.011
45. Chau KY, Korlipara LP, Cooper JM, Schapira AH. Protection against paraquat and A53T alpha-synuclein toxicity by cabergoline is partially mediated by dopamine receptors. J Neurol Sci. 2009; 278: 44-53. doi: 10.1016/j.nbd.2011.02.011
46. Somayajulu-Nitu M, Sandhu JK, Cohen J, et al. Paraquat induces oxidative stress, neuronal loss in substantia nigra region and parkinsonism in adult rats: Neuroprotection and amelioration of symptoms by water-soluble formulation of coenzyme Q10. BMC Neurosci. 2009; 10: 88. doi: 10.1186/1471-2202-10-88
47. Thiruchelvam M, Brockel BJ, Richfield EK, et al. Potentiated and preferential effects of combined paraquat and maneb on nigrostriatal dopamine systems: Environmental risk factors for Parkinson’s disease? Brain Res. 2000; 873: 225-234. doi: 10.1016/S0006-8993(00)02496-3
48. Brown TP, Rumsby PC, Capleton AC, Rushton L, Levy LS. Pesticides and Parkinson’s disease-Is there a link? Environ Health Perspect. 2006; 114: 156-164. doi: 10.1289/ehp.8095
49. Durand E, Petit O, Tremblay L, Zimmer C, et al. Social behavioral changes in MPTP-treated monkey model of Parkinson’s disease. Front Behav Neurosci. 2015; 9: 42. doi: 10.3389/fnbeh.2015.00042