1. Hagey LR, Crombie DL, Espinosa E, Carey MC, Igimi H, Hofmann AF. Ursodeoxycholic acid in the Ursidae: biliary bile acids of bears, pandas, and related carnivores. J Lipid Res. 1993; 34: 1911-1917.
2. Beuers U, Trauner M, Jansen P, Poupon R. New paradigms in the treatment of hepatic cholestasis: From UDCA to FXR, PXR and beyond. J Hepatol. 2015; 62: S25. doi: 10.1016/j.jhep.2015.02.023
3. Paumgartner G, Beuers U. Ursodeoxycholic acid in cholestatic liver disease: mechanisms of action and therapeutic use revisited. Hepatology. 2002; 36: 525. doi: 10.1053/jhep.2002.36088
4. Roma MG, Toledo FD, Boaglio AC, Basiglio CL, Crocenzi FA, Sánchez Pozzi EJ. Ursodeoxycholic acid in cholestasis: linking action mechanisms to therapeutic applications. Clin Sci (Lond). 2011; 121: 523. doi: 10.1042/CS20110184
5. Tanaka H, Makino I. Ursodeoxycholicacid-dependent activation of the glucocorticoid receptor. Biochem Biophys Res Commun. 1992; 188: 942. doi: 10.1016/0006-291X(92)91146-H
6. Solá S, Amaral JD, Castro RE, et al. Nuclear translocation of UDCA by the glucocorticoid receptor is required to reduce TGF-beta1-induced apoptosis in rat hepatocytes. Hepatology. 2005; 42: 925. doi: 10.1002/hep.20870
7. Rodrigues CM, Fan G, Wong PY, Kren BT, Steer CJ. Ursodeoxycholic acid may inhibit deoxycholic acid-induced apoptosis by modulating mitochondrial transmembrane potential and reactive oxygen species production. Mol Med. 1998; 4: 165-178.
8. Bernardes-Silva CF, Damião AO, Sipahi AM, et al. Ursodeoxycholic acid ameliorates experimental ileitis counteracting intestinal barrier dysfunction and oxidative stress. Dig Dis Sci. 2004; 49: 1569. doi: 10.1023/B:DDAS.0000043365.39251.6e
9. Araki Y, Andoh A, Bamba H, et al. The cytotoxicity of hydrophobic bile acids is amelioratedby more hydrophilic bile acids in intestinal cell lines IEC-6 and Caco-2. Oncol Rep. 2003; 10: 1931. doi: 10.3892/or.10.6.1931
10. Wali RK, Frawley BP Jr, Hartmann S, et al. Mechanism of action of chemoprotectiveursodeoxycholate in the azoxymethanemodel of rat colonic carcinogenesis: potential roles of proteinkinase C-alpha, -beta II, and -zeta. Cancer Res. 1995; 55: 5257.
11. Narisawa T, Fukaura Y, Terada K, Sekiguchi H. Prevention of N-methylnitrosourea-induced colon tumorigenesis by ursodeoxycholic acid in F344 rats. Jpn J Cancer Res. 1998; 89: 1009. doi: 10.1111/j.1349-7006.1998.tb00489.x
12. Singh S, Khanna S, Pardi DS, Loftus EV Jr, Talwalkar JA. Effect of ursodeoxycholic acid use on the risk of colorectal neoplasia in patientswith primary sclerosing cholangitis and inflammatory bowel disease: asystematic review and meta-analysis. Inflamm Bowel Dis. 2013; 19: 1631. doi: 10.1097/MIB.0b013e318286fa61
13. Hill MJ, Melville DM, Lennard-Jones JE, Neale K, Ritchie JK. Faecal bile acids, dysplasia, and carcinoma in ulcerative colitis. Lancet. 1987; 2: 185. doi: 10.1016/S0140-6736(87)90766-5
14. Batta AK, Salen G, Holubec H, Brasitus TA, Alberts D, Earnest DL. Enrichment of the more hydrophilic bile acid ursodeoxycholic acid in the fecal water-soluble fraction after feeding to rats with colon polyps. Cancer Res. 1998; 58: 1684.
15. Wali RK, Frawley BP Jr, Hartmann S, et al. Mechanism of action of chemoprotectiveursodeoxycholate in the azoxymethane model of rat colonic carcinogenesis: potential roles of protein kinase C-alpha, -beta II, and -zeta. Cancer Res. 1995; 55: 5257.
16. Ikegami T, Matsuzaki Y, Shoda J, Kano M, Hirabayashi N, Tanaka N. The chemopreventive role of ursodeoxycholic acid in azoxymethane-treated rats: suppressive effects on enhanced group II phospholipase A2 expression in colonic tissue. Cancer Lett. 1998; 134: 129. doi: 10.1016/S0304-3835(98)00248-1
17. Kusunoki M, Sakanoue Y, Hatada T, Yanagi H, Yamamura T, Utsunomiya J. Protein kinase C activity in human colonic adenoma and colorectal carcinoma. Cancer. 1992; 69: 24. doi: 10.1002/1097-0142(19920101)69:1<24::AID-CNCR2820690107>3.0.CO;2-1
18. Kopp R, Noelke B, Sauter G, Schildberg FW, Paumgartner G, Pfeiffer A. Alteredprotein kinase C activity in biopsies of human colonic adenomas and carcinomas. Cancer Res. 1991; 51: 205.
19. Hendrickse CW, Radley S, Donovan IA, Keighley MR, Neoptolemos JP. Activities of phospholipase A2 and diacylglycerol lipase are increased in human colorectal cancer. Br J Surg. 1995; 82: 475. doi: 10.1002/bjs.1800820415
20. Spechler SJ, Sharma P, Souza RF, Inadomi JM, Shaheen NJ. American Gastroenterological Association technical review on the management of Barrett’s esophagus. Gastroenterology. 2001; 140: e18. doi: 10.1053/j.gastro.2011.01.031
21. Pohl H, Sirovich B, Welch HG. Esophageal adenocarcinoma incidence:are we reaching the peak? Cancer Epidemiol Biomarkers Prev. 2010; 19: 1468. doi: 10.1158/1055-9965.EPI-10-0012
22. Nehra D, Howell P, Williams CP, Pye JK, Beynon J. Toxic bile acids in gastro-oesophageal reflux disease: influence of gastric acidity. Gut. 1999; 44: 598. doi: 10.1136/gut.44.5.598
23. Vaezi MF, Richter JE. Role of acid and duodenogastroesophageal reflux in gastroesophageal reflux disease. Gastroenterology. 1996; 111: 1192. doi: 10.1053/gast.1996.v111.pm8898632
24. Huo X, Juergens S, Zhang X, et al. Deoxycholic acid causes dna damage while inducing apoptotic resistance through nf-kappa b activation in benign barrett’s epithelial cells. Am J Physiol Gastrointest Liver Physiol. 2011; 301: G278. doi: 10.1152/ajpgi.00092.2011
25. Peng S, Huo X, Rezaei D, Zhang Q, et al. In Barrett’s esophagus patients and Barrett’s cell lines, ursodeoxycholic acid increases antioxidant expression and prevents DNA damage by bile acids. Am J Physiol Gastrointest Liver Physiol. 2014; 307: G129. doi: 10.1152/ajpgi.00085.2014
26. Kowdley KV. Ursodeoxycholic acid therapy in hepatobiliary disease. Am J Med. 2000; 108: 481. doi: 10.1016/S0002-9343(00)00318-1
27. Bonner WM, Redon CE, Dickey JS, et al. GammaH2AX and cancer. Nat Rev Cancer. 2008; 8: 957. doi: 10.1038/nrc2523
28. Mills KD, Ferguson DO, Alt FW. The role of DNA breaks in genomic instability and tumorigenesis. Immunol Rev. 2003; 194: 77. doi: 10.1034/j.1600-065X.2003.00060.x
29. Albino AP, Huang X, Jorgensen E, Yang J, Gietl d, Traganos F, Darzynkiewicz Z. Induction of H2AX phosphorylation in pulmonary cells by tobacco smoke: a new assay for carcinogens. Cell Cycle. 2004; 3: 1062. doi: 10.4161/cc.3.8.988
30. Bozikas A, Marsman WA, Rosmolen WD, et al. The effect of oral administration of ursodeoxycholic acid and high-dose proton pump inhibitors on the histology of Barrett’s esophagus. Dis Esophagus. 2008; 21: 346. doi: 10.1111/j.1442-2050.2007.00782.x