1. Warburg O. On the origin of cancer cells. Science. 1956; 123(3191): 309-314. doi: 10.1126/science.123.3191.309
2. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000; 100(1): 57-70. doi: 10.1016/S0092-8674(00)81683-9
3. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011; 144(5): 646-674. doi: 10.1016/j.cell.2011.02.013
4. Weinberg F, Chandel NS. Mitochondrial metabolism and cancer. Annals of the New York Academy of Sciences. 2009; 1177: 66-73. doi: 10.1111/j.1749-6632.2009.05039.x
5. Tennant DA, Duran RV, Gottlieb E. Targeting metabolic transformation for cancer therapy. Nature reviews Cancer. 2010; 10(4): 267-277. doi: 10.1038/nrc2817
6. Ling FC, Khochfar J, Baldus SE, et al. HIF-1alpha protein expression is associated with the environmental inflammatory reaction in Barrett’s metaplasia. Diseases of the esophagus : official journal of the International Society for Diseases of the Esophagus / ISDE. 2009; 22(8): 694-699. doi: 10.1111/j.1442-2050.2009.00957.x
7. Schmaltz C, Hardenbergh PH, Wells A, Fisher DE. Regulation of proliferation-survival decisions during tumor cell hypoxia. Molecular and cellular biology. 1998; 18(5): 2845-2854. doi: 10.1128%2Fmcb.18.5.2845
8. Brizel DM, Scully SP, Harrelson JM, et al. Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma. Cancer research. 1996; 56(5): 941-943.
9. Casey TM, Pakay JL, Guppy M, Arthur PG. Hypoxia causes downregulation of protein and RNA synthesis in noncontracting Mammalian cardiomyocytes. Circulation research. 2002; 90(7): 777-783. doi: 10.1161/01.RES.0000015592.95986.0
10. Semenza GL. Regulation of metabolism by hypoxia-inducible factor 1. Cold Spring Harbor symposia on quantitative biology. 2011; 76: 347-353. doi: 10.1101/sqb.2011.76.010678
11. Zheng Y, Delgoffe GM, Meyer CF, Chan W, Powell JD. Anergic T cells are metabolically anergic. Journal of immunology. 2009; 183(10): 6095-6101. doi: 10.4049/jimmunol.0803510
12. Fox CJ, Hammerman PS, Thompson CB. Fuel feeds function: energy metabolism and the T-cell response. Nature reviews Immunology. 2005; 5(11): 844-852. doi: 10.1038/nri1710
13. Dziurla R, Gaber T, Fangradt M, et al. Effects of hypoxia and/or lack of glucose on cellular energy metabolism and cytokine production in stimulated human CD4+ T lymphocytes. Immunology letters. 2010; 131(1): 97-105. doi: 10.1016/j.imlet.2010.02.008
14. Dang EV, Barbi J, Yang HY, et al. Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1. Cell. 2011; 146(5): 772-784. doi: 10.1016/j.cell.2011.07.033
15. Shi LZ, Wang R, Huang G, et al. HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. The Journal of experimental medicine. 2011; 208(7): 1367-1376. doi: 10.1084/jem.20110278
16. Finlay DK, Rosenzweig E, Sinclair LV, et al. PDK1 regulation of mTOR and hypoxia-inducible factor 1 integrate metabolism and migration of CD8+ T cells. The Journal of experimental medicine. 2012; 209(13): 2441-2453. doi: 10.1084/jem.20112607
17. Dandapani M, Hardie DG. AMPK: opposing the metabolic changes in both tumour cells and inflammatory cells? Biochemical Society Transactions. 2013; 41(2): 687-693. doi: 10.1042/BST20120351
18. Merrill GF, Kurth EJ, Hardie DG, Winder WW. AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle. The American Journal of Physiology. 1997; 273(6 Pt 1): E1107-E1112. doi: 10.1152/ajpendo.1997.273.6.e1107
19. Zong H, Ren JM, Young LH, et al. AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proceedings of the National Academy of Sciences of the United States of America. 2002; 99(25): 15983-15987. doi: 10.1073/pnas.252625599
20. Winder WW, Holmes BF, Rubink DS, Jensen EB, Chen M, Holloszy JO. Activation of AMP-activated protein kinase increases mitochondrial enzymes in skeletal muscle. Journal of applied physiology (Bethesda, Md : 1985). 2000; 88(6): 2219-2226. doi: 10.1152/jappl.2000.88.6.2219
21. Hardie DG, Ross FA, Hawley SA. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nature reviews Molecular cell biology. 2012; 13(4): 251-262. doi: 10.1038/nrm3311
22. Hoppe S, Bierhoff H, Cado I, et al. AMP-activated protein kinase adapts rRNA synthesis to cellular energy supply. Proceedings of the National Academy of Sciences of the United States of America. 2009; 106(42): 17781-17786. doi: 10.1073/pnas.0909873106
23. Shackelford DB, Vasquez DS, Corbeil J, et al. mTOR and HIF-1alpha-mediated tumor metabolism in an LKB1 mouse model of Peutz-Jeghers syndrome. Proceedings of the National Academy of Sciences of the United States of America. 2009; 106(27): 11137-11142. doi: 10.1073/pnas.0900465106
24. Krawczyk CM, Holowka T, Sun J, et al. Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation. Blood. 2010; 115(23): 4742-4749. doi: 10.1182/blood-2009-10-249540
25. Sag D, Carling D, Stout RD, Suttles J. Adenosine 5’-monophosphate-activated protein kinase promotes macrophage polarization to an anti-inflammatory functional phenotype. Journal of immunology (Baltimore, Md : 1950). 2008; 181(12): 8633-8641. doi: 10.4049/jimmunol.181.12.8633
26. Rolf J, Zarrouk M, Finlay DK, Foretz M, Viollet B, Cantrell DA. AMPKalpha1: a glucose sensor that controls CD8 T-cell memory. European journal of immunology. 2013; 43(4): 889-896. doi: 10.1002/eji.201243008
27. Berkers CR, Maddocks OD, Cheung EC, Mor I, Vousden KH. Metabolic regulation by p53 family members. Cell Metabolism. 2013; 18(5): 617-633. doi: 10.1016/j.cmet.2013.06.019
28. Vousden KH, Ryan KM. p53 and metabolism. Nature reviews Cancer. 2009; 9(10): 691-700. doi: 10.1038/nrc2715
29. Kulawiec M, Ayyasamy V, Singh KK. p53 regulates mtDNA copy number and mitocheckpoint pathway. Journal of carcinogenesis. 2009; 8: 8. doi: 10.4103/1477-3163.50893
30. Sahin E, Colla S, Liesa M, et al. Telomere dysfunction induces metabolic and mitochondrial compromise. Nature. 2011; 470(7334): 359-365. doi: 10.1038/nature09787
31. Kitamura N, Nakamura Y, Miyamoto Y, et al. Mieap, a p53-inducible protein, controls mitochondrial quality by repairing or eliminating unhealthy mitochondria. PLoS One. 2011; 6(1): e16060. doi: 10.1371/journal.pone.0016060
32. Cardin R, Piciocchi M, Tieppo C, et al. Oxidative DNA damage in Barrett mucosa: correlation with telomeric dysfunction and p53 mutation. Annals of surgical oncology. 2013; 20 Suppl 3: S583-S589. doi: 10.1245/s10434-013-3043-1
33. Matoba S, Kang JG, Patino WD, et al. p53 regulates mitochondrial respiration. Science. 2006; 312(5780): 1650-1653. doi: 10.1126/science.1126863
34. Okamura S, Ng CC, Koyama K, et al. Identification of seven genes regulated by wild-type p53 in a colon cancer cell line carrying a well-controlled wild-type p53 expression system. Oncology research. 1999; 11(6): 281-285.
35. Stambolsky P, Weisz L, Shats I, et al. Regulation of AIF expression by p53. Cell death and differentiation. 2006; 13(12): 2140-2149. doi: 10.1038/sj.cdd.4401965
36. Cheung EC, Ludwig RL, Vousden KH. Mitochondrial localization of TIGAR under hypoxia stimulates HK2 and lowers ROS and cell death. Proceedings of the National Academy of Sciences of the United States of America. 2012; 109(50): 20491-20496. doi: 10.1073/pnas.1206530109
37. Li H, Jogl G. Structural and biochemical studies of TIGAR (TP53-induced glycolysis and apoptosis regulator). The Journal of biological chemistry. 2009; 284(3): 1748-1754. doi: 10.1074/jbc.M807821200
38. Contractor T, Harris CR. p53 negatively regulates transcription of the pyruvate dehydrogenase kinase Pdk2. Cancer research. 2012; 72(2): 560-567. doi: 10.1158/0008-5472.CAN-11-1215
39. Schwartzenberg-Bar-Yoseph F, Armoni M, Karnieli E. The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer research. 2004; 64(7): 2627-2633. doi: 10.1158/0008-5472.CAN-03-0846
40. Boidot R, Vegran F, Meulle A, et al. Regulation of monocarboxylate transporter MCT1 expression by p53 mediates inward and outward lactate fluxes in tumors. Cancer research. 2012; 72(4): 939-948. doi: 10.1158/0008-5472.CAN-11-2474
41. Mathupala SP, Heese C, Pedersen PL. Glucose catabolism in cancer cells. The type II hexokinase promoter contains functionally active response elements for the tumor suppressor p53. The Journal of biological chemistry. 1997; 272(36): 22776-22780. doi: 10.1074/jbc.272.36.22776
42. Maddocks OD, Vousden KH. Metabolic regulation by p53. Journal of molecular medicine (Berlin, Germany). 2011; 89(3): 237-245. doi: 10.1007/s00109-011-0735-5
43. Hotamisligil GS, Erbay E. Nutrient sensing and inflammation in metabolic diseases. Nature reviews Immunology. 2008; 8(12): 923-934. doi: 10.1038/nri2449
44. Solinas G, Karin M. JNK1 and IKKbeta: molecular links between obesity and metabolic dysfunction. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2010; 24(8): 2596-2611. doi: 10.1096/fj.09-151340
45. Tornatore L, Thotakura AK, Bennett J, Moretti M, Franzoso G. The nuclear factor kappa B signaling pathway: integrating metabolism with inflammation. Trends in cell biology. 2012; 22(11): 557-566. doi: 10.1016/j.tcb.2012.08.001
46. Marusawa H, Jenkins BJ. Inflammation and gastrointestinal cancer: an overview. Cancer Letters. 2014; 345(2): 153-156. doi: 10.1016/j.canlet.2013.08.025
47. DiDonato JA, Mercurio F, Karin M. NF-kappaB and the link between inflammation and cancer. Immunological reviews. 2012; 246(1): 379-400. doi: 10.1111/j.1600-065X.2012.01099.x
48. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010; 140(6): 883-899. doi: 10.1016/j.cell.2010.01.025
49. Johnson RF, Witzel, II, Perkins ND. p53-dependent regulation of mitochondrial energy production by the RelA subunit of NF-kappaB. Cancer research. 2011; 71(16): 5588-5597. doi: 10.1158/0008-5472.CAN-10-4252
50. Kawauchi K, Araki K, Tobiume K, Tanaka N. p53 regulates glucose metabolism through an IKK-NF-kappaB pathway and inhibits cell transformation. Nature cell biology. 2008; 10(5): 611-618. doi: 10.1038/ncb1724
51. Mauro C, Leow SC, Anso E, et al. NF-kappaB controls energy homeostasis and metabolic adaptation by upregulating mitochondrial respiration. Nature cell biology. 2011; 13(10): 1272-1279. doi: 10.1038/ncb2324
52. Eelen G, Cruys B, Welti J, De Bock K, Carmeliet P. Control of vessel sprouting by genetic and metabolic determinants. Trends in endocrinology and metabolism: TEM. 2013; 24(12): 589-596. doi: 10.1016/j.tem.2013.08.006
53. De Bock K, Georgiadou M, Carmeliet P. Role of endothelial cell metabolism in vessel sprouting. Cell metabolism. 2013; 18(5): 634-647. doi: 10.1016/j.cmet.2013.08.001
54. De Bock K, Georgiadou M, Schoors S, et al. Role of PFKFB3-driven glycolysis in vessel sprouting. Cell. 2013; 154(3): 651-663. doi: 10.1016/j.cell.2013.06.037
55. Potente M, Gerhardt H, Carmeliet P. Basic and therapeutic aspects of angiogenesis. Cell. 2011; 146(6): 873-887. doi: 10.1016/j.cell.2011.08.039
56. Sonveaux P, Copetti T, De Saedeleer CJ, et al. Targeting the lactate transporter MCT1 in endothelial cells inhibits lactate-induced HIF-1 activation and tumor angiogenesis. PLoS One. 2012; 7(3): e33418g. doi: 10.1371/journal.pone.0033418
57. Hunt TK, Aslam RS, Beckert S, et al. Aerobically derived lactate stimulates revascularization and tissue repair via redox mechanisms. Antioxidants & redox signaling. 2007; 9(8): 1115-1124. doi: 10.1089/ars.2007.1674
58. Vegran F, Boidot R, Michiels C, Sonveaux P, Feron O. Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-kappaB/IL-8 pathway that drives tumor angiogenesis. Cancer Research. 2011; 71(7): 2550-2560. doi: 10.1158/0008-5472.CAN-10-2828
59. Hao Q, Wang L, Tang H. Vascular endothelial growth factor induces protein kinase D-dependent production of proinflammatory cytokines in endothelial cells. American journal of physiology Cell physiology. 2009; 296(4): C821-C827. doi: 10.1152/ajpcell.00504.2008
60. Wright GL, Maroulakou IG, Eldridge J, et al. VEGF stimulation of mitochondrial biogenesis: requirement of AKT3 kinase. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2008; 22(9): 3264-3275. doi: 10.1096/fj.08-106468
61. Elmasri H, Karaaslan C, Teper Y, et al. Fatty acid binding protein 4 is a target of VEGF and a regulator of cell proliferation in endothelial cells. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2009; 23(11): 3865-3873. doi: 10.1096/fj.09-134882
62. Hagberg CE, Mehlem A, Falkevall A, et al. Targeting VEGF-B as a novel treatment for insulin resistance and type 2 diabetes. Nature. 2012; 490(7420): 426-430. doi: 10.1038/nature11464
63. Xu X, Ye L, Araki K, Ahmed R. mTOR, linking metabolism and immunity. Seminars in immunology. 2012; 24(6): 429-435. doi: 10.1016/j.smim.2012.12.005
64. Thomson AW, Turnquist HR, Raimondi G. Immunoregulatory functions of mTOR inhibition. Nature reviews Immunology. 2009; 9(5): 324-337. doi: 10.1038/nri2546
65. Buller CL, Loberg RD, Fan MH, et al. A GSK-3/TSC2/mTOR pathway regulates glucose uptake and GLUT1 glucose transporter expression. American journal of physiology Cell physiology. 2008; 295(3): C836-C843. doi: 10.1152/ajpcell.00554.2007
66. Duvel K, Yecies JL, Menon S, et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Molecular cell. 2010; 39(2): 171-183. doi: 10.1016/j.molcel.2010.06.022
67. Wang R, Dillon CP, Shi LZ, et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity. 2011; 35(6): 871-882. doi: 10.1016/j.immuni.2011.09.021
68. Araki K, Turner AP, Shaffer VO, et al. mTOR regulates memory CD8 T-cell differentiation. Nature. 2009; 460(7251): 108-112. doi: 10.1038/nature08155
69. Selak MA, Armour SM, MacKenzie ED, et al. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell. 2005; 7(1): 77-85. doi: 10.1016/j.ccr.2004.11.022
70. Pistollato F, Abbadi S, Rampazzo E, et al. Hypoxia and succinate antagonize 2-deoxyglucose effects on glioblastoma. Biochemical pharmacology. 2010; 80(10): 1517-1527. doi: 10.1016/j.bcp.2010.08.003
71. Tannahill GM, Curtis AM, Adamik J, et al. Succinate is an inflammatory signal that induces IL-1beta through HIF-1alpha. Nature. 2013; 496(7444): 238-242. doi: 10.1038/nature11986
72. Qi QR, Yang ZM. Regulation and function of signal transducer and activator of transcription 3. World journal of biological chemistry. 2014; 5(2): 231-239. doi: 10.4331/wjbc.v5.i2.231
73. Haigis MC, Deng CX, Finley LW, Kim HS, Gius D. SIRT3 is a mitochondrial tumor suppressor: a scientific tale that connects aberrant cellular ROS, the Warburg effect, and carcinogenesis. Cancer research. 2012; 72(10): 2468-2472. doi: 10.1158/0008-5472.CAN-11-3633
74. Tateno T, Asa SL, Zheng L, Mayr T, Ullrich A, Ezzat S. The FGFR4-G388R polymorphism promotes mitochondrial STAT3 serine phosphorylation to facilitate pituitary growth hormone cell tumorigenesis. PLoS genetics. 2011; 7(12): e1002400. doi: 10.1371/journal.pgen.1002400
75. Gough DJ, Corlett A, Schlessinger K, Wegrzyn J, Larner AC, Levy DE. Mitochondrial STAT3 supports Ras-dependent oncogenic transformation. Science. 2009; 324(5935): 1713-1716. doi: 10.1126/science.1171721
76. Gough DJ, Marie IJ, Lobry C, Aifantis I, Levy DE. STAT3 supports experimental K-RasG12D-induced murine myeloproliferative neoplasms dependent on serine phosphorylation. Blood. 2014; 22. doi: 10.1182/blood-2013-02-484196
77. Henderson B, Bitensky L, Chayen J. Glycolytic activity in human synovial lining cells in rheumatoid arthritis. Annals of the rheumatic diseases. 1979; 38(1): 63-67. doi: 10.1136/ard.38.1.63
78. Chang X, Wei C. Glycolysis and rheumatoid arthritis. International journal of rheumatic diseases. 2011; 14(3): 217-222. doi: 10.1111/j.1756-185X.2011.01598.x
79. Ciurtin C, Cojocaru VM, Miron IM, et al. Correlation between different components of synovial fluid and pathogenesis of rheumatic diseases. Romanian journal of internal medicine = Revue roumaine de medecine interne. 2006; 44(2): 171-181.
80. Biniecka M, Fox E, Gao W, et al. Hypoxia induces mitochondrial mutagenesis and dysfunction in inflammatory arthritis. Arthritis and rheumatism. 2011; 63(8): 2172-2182. doi: 10.1002/art.30395
81. Moran EM, Heydrich R, Ng CT, et al. IL-17A expression is localised to both mononuclear and polymorphonuclear synovial cell infiltrates. PLoS One. 2011; 6(8): e24048. doi: 10.1371/journal.pone.0024048
82. Biniecka M, Kennedy A, Ng CT, et al. Successful tumour necrosis factor (TNF) blocking therapy suppresses oxidative stress and hypoxia-induced mitochondrial mutagenesis in inflammatory arthritis. Arthritis research & therapy. 2011; 13(4): R121. doi: 10.1186/ar3424
83. Kennedy A, Ng CT, Chang TC, et al. Tumor necrosis factor blocking therapy alters joint inflammation and hypoxia. Arthritis and rheumatism. 2011; 63(4): 923-932. doi: 10.1002/art.30221
84. Ng CT, Biniecka M, Kennedy A, et al. Synovial tissue hypoxia and inflammation in vivo. Annals of the rheumatic diseases. 2010; 69(7): 1389-1395. doi: 10.1136/ard.2009.119776
85. Hollander AP, Corke KP, Freemont AJ, Lewis CE. Expression of hypoxia-inducible factor 1alpha by macrophages in the rheumatoid synovium: implications for targeting of therapeutic genes to the inflamed joint. Arthritis and rheumatism. 2001; 44(7): 1540-1544. doi: 10.1002/1529-0131(200107)44:7<1540::AID-ART277>3.0.CO;2-7
86. Giatromanolaki A, Sivridis E, Maltezos E, et al. Upregulated hypoxia inducible factor-1alpha and -2alpha pathway in rheumatoid arthritis and osteoarthritis. Arthritis research & therapy. 2003; 5(4): R193-R201. doi: 10.1186/ar756
87. Mobasheri A, Richardson S, Mobasheri R, Shakibaei M, Hoyland JA. Hypoxia inducible factor-1 and facilitative glucose transporters GLUT1 and GLUT3: putative molecular components of the oxygen and glucose sensing apparatus in articular chondrocytes. Histology and histopathology. 2005; 20(4): 1327-1338. doi: 10.14670/hh-20.1327
88. Gaber T, Dziurla R, Tripmacher R, Burmester GR, Buttgereit F. Hypoxia inducible factor (HIF) in rheumatology: low O2! See what HIF can do! Annals of the rheumatic diseases. 2005; 64(7): 971-980. doi: 10.1136/ard.2004.031641
89. Bodamyali T, Stevens CR, Billingham ME, Ohta S, Blake DR. Influence of hypoxia in inflammatory synovitis. Annals of the rheumatic diseases. 1998; 57(12): 703-710. doi: 10.1136/ard.57.12.703
90. Distler JH, Wenger RH, Gassmann M, et al. Physiologic responses to hypoxia and implications for hypoxia-inducible factors in the pathogenesis of rheumatoid arthritis. Arthritis and rheumatism. 2004; 50(1): 10-23. doi: 10.1002/art.11425
91. Taylor PC, Sivakumar B. Hypoxia and angiogenesis in rheumatoid arthritis. Current opinion in rheumatology. 2005; 17(3): 293-298. doi: 10.1097/01.bor.0000155361.83990.5b
92. Firestein GS, Echeverri F, Yeo M, Zvaifler NJ, Green DR. Somatic mutations in the p53 tumor suppressor gene in rheumatoid arthritis synovium. Proceedings of the National Academy of Sciences of the United States of America. 1997; 94(20): 10895-10900. doi: 10.1073/pnas.94.20.10895
93. Reme T, Travaglio A, Gueydon E, Adla L, Jorgensen C, Sany J. Mutations of the p53 tumour suppressor gene in erosive rheumatoid synovial tissue. Clinical and experimental immunology. 1998; 111(2): 353-358. doi: 10.1046/j.1365-2249.1998.00508.x
94. Kullmann F, Judex M, Neudecker I, et al. Analysis of the p53 tumor suppressor gene in rheumatoid arthritis synovial fibroblasts. Arthritis and rheumatism. 1999; 42(8): 1594-1600. doi: 10.1002/1529-0131(199908)42:8<1594::AID-ANR5>3.0.CO;2-#
95. Kawauchi K, Araki K, Tobiume K, Tanaka N. Loss of p53 enhances catalytic activity of IKKbeta through O-linked beta-N-acetyl glucosamine modification. Proceedings of the National Academy of Sciences of the United States of America. 2009; 106(9): 3431-3436. doi: 10.1073/pnas.0813210106
96. Biniecka M, Connolly M, Gao W, et al. Redox mediated angiogenesis in the hypoxic joint of inflammatory arthritis. Arthritis & rheumatology (Hoboken, NJ). 2014; 66(12): 3300-3310. doi: 10.1002/art.38822
97. Yang M, Guo M, Hu Y, Jiang Y. Scube regulates synovial angiogenesis-related signaling. Medical hypotheses. 2013; 81(5): 948-953. doi: 10.1016/j.mehy.2013.09.001
98. Bailey SM, Udoh US, Young ME. Circadian regulation of metabolism. The Journal of endocrinology. 2014; 222(2): R75-R96. doi: 10.1530/JOE-14-0200
99. Langmesser S, Albrecht U. Life time-circadian clocks, mitochondria and metabolism. Chronobiology international. 2006; 23(1-2): 151-157. doi: 10.1080/07420520500464437
100. Nikonova EV, Vijayasarathy C, Zhang L, et al. Differences in activity of cytochrome C oxidase in brain between sleep and wakefulness. Sleep. 2005; 28(1): 21-27. doi: 10.1093/sleep/28.1.21
101. Jordan SD, Lamia KA. AMPK at the crossroads of circadian clocks and metabolism. Molecular and cellular endocrinology. 2013; 366(2): 163-169. doi: 10.1016/j.mce.2012.06.017
102. Sancar A. Regulation of the mammalian circadian clock by cryptochrome. The Journal of biological chemistry. 2004; 279(33): 34079-34082. doi: 10.1074/jbc.R400016200
103. Busino L, Bassermann F, Maiolica A, et al. SCFFbxl3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins. Science. 2007; 316(5826): 900-904. doi: 10.1126/science.1141194
104. Lamia KA, Sachdeva UM, DiTacchio L, et al. AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science. 2009; 326(5951): 437-440. doi: 10.1126/science.1172156
105. Etchegaray JP, Machida KK, Noton E, et al. Casein kinase 1 delta regulates the pace of the mammalian circadian clock. Molecular and cellular biology. 2009; 29(14): 3853-3866. doi: 10.1128/MCB.00338-09
106. Um JH, Yang S, Yamazaki S, et al. Activation of 5’-AMP-activated kinase with diabetes drug metformin induces casein kinase Iepsilon (CKIepsilon)-dependent degradation of clock protein mPer2. J Biol Chem. 2007; 282(29): 20794-20798. doi: 10.1074/jbc.C700070200
107. Vieira E, Nilsson EC, Nerstedt A, et al. Relationship between AMPK and the transcriptional balance of clock-related genes in skeletal muscle. American journal of physiology Endocrinology and metabolism. 2008; 295(5): E1032-E1037. doi: 10.1152/ajpendo.90510.2008
108. Canto C, Gerhart-Hines Z, Feige JN, et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature. 2009; 458(7241): 1056-1060. doi: 10.1038/nature07813
109. Lan F, Cacicedo JM, Ruderman N, Ido Y. SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1. Possible role in AMP-activated protein kinase activation. The Journal of biological chemistry. 2008; 283(41): 27628-27635. doi: 10.1074/jbc.M805711200
110. Walker JW, Jijon HB, Madsen KL. AMP-activated protein kinase is a positive regulator of poly(ADP-ribose) polymerase. Biochemical and biophysical research communications. 2006; 342(1): 336-341. doi: 10.1016/j.bbrc.2006.01.145
111. Fulco M, Cen Y, Zhao P, et al. Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt. Developmental cell. 2008; 14(5): 661-673. doi: 10.1016/j.devcel.2008.02.004
112. Zhang X, Xu L, Shen J, et al. Metabolic signatures of esophageal cancer: NMR-based metabolomics and UHPLC-based focused metabolomics of blood serum. Biochimica et biophysica acta. 2013; 1832(8): 1207-1216. doi: 10.1016/j.bbadis.2013.03.009
113. Abbassi-Ghadi N, Kumar S, Huang J, Goldin R, Takats Z, Hanna GB. Metabolomic profiling of oesophago-gastric cancer: a systematic review. European journal of cancer. 2013; 49(17): 3625-3637. doi: 10.1016/j.ejca.2013.07.004
114. Ussakli CH, Ebaee A, Binkley J, et al. Mitochondria and tumor progression in ulcerative colitis. Journal of the National Cancer Institute. 2013; 105(16): 1239-1248. doi: 10.1093/jnci/djt167
115. Gruno M, Peet N, Tein A, et al. Atrophic gastritis: deficient complex I of the respiratory chain in the mitochondria of corpus mucosal cells. Journal of gastroenterology. 2008; 43(10): 780-788. doi: 10.1007/s00535-008-2231-4
116. O’Sullivan KE, Phelan JJ, O’Hanlon C, Lysaght J, O’Sullivan JN, Reynolds JV. The role of inflammation in cancer of the esophagus. Expert review of gastroenterology & hepatology. 2014; 8(7): 749-760. doi: 10.1586/17474124.2014.913478
117. Phelan JJ, MacCarthy F, Feighery R, et al. Differential expression of mitochondrial energy metabolism profiles across the metaplasia-dysplasia-adenocarcinoma disease sequence in Barrett’s oesophagus. Cancer Letters. 2014; 354(1): 122-131. doi: 10.1016/j.canlet.2014.07.035
118. Ando M, Uehara I, Kogure K, et al. Interleukin 6 enhances glycolysis through expression of the glycolytic enzymes hexokinase 2 and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3. Journal of Nippon Medical School = Nippon Ika Daigaku zasshi. 2010; 77(2): 97-105. doi: 10.1272/jnms.77.97
119. Catarzi S, Favilli F, Romagnoli C, et al. Oxidative state and IL-6 production in intestinal myofibroblasts of Crohn’s disease patients. Inflammatory bowel diseases. 2011; 17(8): 1674-1684. doi: 10.1002/ibd.21552
120. Dvorakova K, Payne CM, Ramsey L, et al. Increased expression and secretion of interleukin-6 in patients with Barrett’s esophagus. Clinical cancer research : an official journal of the American Association for Cancer Research. 2004; 10(6): 2020-2028. doi: 10.1158/1078-0432.CCR-0437-03
121. Kastelein F, Biermann K, Steyerberg EW, et al. Aberrant p53 protein expression is associated with an increased risk of neoplastic progression in patients with Barrett’s oesophagus. Gut. 2013; 62(12): 1676-1683. doi: 10.1136/gutjnl-2012-30359
122. Angelo LS, Talpaz M, Kurzrock R. Autocrine interleukin-6 production in renal cell carcinoma: evidence for the involvement of p53. Cancer research. 2002; 62(3): 932-940.
123. Bar F, Bochmann W, Widok A, et al. Mitochondrial gene polymorphisms that protect mice from colitis. Gastroenterology. 2013; 145(5): 1055e3-1063e3. doi: 10.1053/j.gastro.2013.07.015
124. Gruno M, Peet N, Seppet E, et al. Oxidative phosphorylation and its coupling to mitochondrial creatine and adenylate kinases in human gastric mucosa. American journal of physiology Regulatory, integrative and comparative physiology. 2006; 291(4): R936-R946. doi: 10.1152/ajpregu.00162.2006
125. Puurand M, Peet N, Piirsoo A, et al. Deficiency of the complex I of the mitochondrial respiratory chain but improved adenylate control over succinate-dependent respiration are human gastric cancer-specific phenomena. Molecular and cellular biochemistry. 2012; 370(1-2): 69-78. doi: 10.1007/s11010-012-1399-3
126. Chan AW, Gill RS, Schiller D, Sawyer MB. Potential role of metabolomics in diagnosis and surveillance of gastric cancer. World journal of gastroenterology : WJG. 2014; 20(36): 12874-12882. doi: 10.3748/wjg.v20.i36.12874
127. Li H, Wang J, Xu H, et al. Decreased fructose-1,6-bisphosphatase-2 expression promotes glycolysis and growth in gastric cancer cells. Molecular cancer. 2013; 12(1): 110. doi: 10.1186/1476-4598-12-110
128. Liu X, Wang X, Zhang J, et al. Warburg effect revisited: an epigenetic link between glycolysis and gastric carcinogenesis. Oncogene. 2010; 29(3): 442-450. doi: 10.1038/onc.2009.332
129. Kwon OH, Kang TW, Kim JH, et al. Pyruvate kinase M2 promotes the growth of gastric cancer cells via regulation of Bcl-xL expression at transcriptional level. Biochemical and biophysical research communications. 2012; 423(1): 38-44. doi: 10.1016/j.bbrc.2012.05.063
130. Zhou CF, Li XB, Sun H, et al. Pyruvate kinase type M2 is upregulated in colorectal cancer and promotes proliferation and migration of colon cancer cells. IUBMB life. 2012; 64(9): 775-782. doi: 10.1002/iub.1066
131. Hur H, Xuan Y, Kim YB, et al. Expression of pyruvate dehydrogenase kinase-1 in gastric cancer as a potential therapeutic target. International journal of oncology. 2013; 42(1): 44-54. doi: 10.3892/ijo.2012.1687
132. Giatromanolaki A, Sivridis E, Maltezos E, et al. Hypoxia inducible factor 1alpha and 2alpha overexpression in inflammatory bowel disease. Journal of clinical pathology. 2003; 56(3): 209-213. doi: 10.1136/jcp.56.3.209
133. Vermeulen N, Vermeire S, Arijs I, et al. Seroreactivity against glycolytic enzymes in inflammatory bowel disease. Inflammatory bowel diseases. 2011; 17(2): 557-564. doi: 10.1002/ibd.21388
134. Bobarykina AY, Minchenko DO, Opentanova IL, et al. Hypoxic regulation of PFKFB-3 and PFKFB-4 gene expression in gastric and pancreatic cancer cell lines and expression of PFKFB genes in gastric cancers. Acta biochimica Polonica. 2006; 53(4): 789-799.
135. Tong M, McHardy I, Ruegger P, et al. Reprograming of gut microbiome energy metabolism by the FUT2 Crohn’s disease risk polymorphism. The ISME journal. 2014; 8(11): 2193-2206. doi: 10.1038/ismej.2014.64
136. Engelman JA, Chen L, Tan X, et al. Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nature medicine. 2008; 14(12): 1351-1356. doi: 10.1038/nm.1890
137. Libby G, Donnelly LA, Donnan PT, Alessi DR, Morris AD, Evans JM. New users of metformin are at low risk of incident cancer: a cohort study among people with type 2 diabetes. Diabetes Care. 2009; 32(9): 1620-1625. doi: 10.2337/dc08-2175
138. Hawley SA, Fullerton MD, Ross FA, et al. The ancient drug salicylate directly activates AMP-activated protein kinase. Science. 2012; 336(6083): 918-922. doi: 10.1126/science.1215327
139. Beckers A, Organe S, Timmermans L, et al. Methotrexate enhances the antianabolic and antiproliferative effects of 5-aminoimidazole-4-carboxamide riboside. Molecular cancer therapeutics. 2006; 5(9): 2211-2217. doi: 10.1158/1535-7163.MCT-06-0001
140. Xuan Y, Hur H, Ham IH, et al. Dichloroacetate attenuates hypoxia-induced resistance to 5-fluorouracil in gastric cancer through the regulation of glucose metabolism. Experimental cell research. 2014; 321(2): 219-230. doi: 10.1016/j.yexcr.2013.12.009
141. Maschek G, Savaraj N, Priebe W, et al. 2-deoxy-D-glucose increases the efficacy of adriamycin and paclitaxel in human osteosarcoma and non-small cell lung cancers in vivo. Cancer research. 2004; 64(1): 31-34. doi: 10.1158/0008-5472.CAN-03-3294
142. Singh D, Banerji AK, Dwarakanath BS, et al. Optimizing cancer radiotherapy with 2-deoxy-d-glucose dose escalation studies in patients with glioblastoma multiforme. Strahlentherapie und Onkologie : Organ der Deutschen Rontgengesellschaft [et al]. 2005; 181(8): 507-514. doi: 10.1007/s00066-005-1320-z
143. Nelson JA, Falk RE. Phloridzin and phloretin inhibition of 2-deoxy-D-glucose uptake by tumor cells in vitro and in vivo. Anticancer research. 1993; 13(6A): 2293-2299.
144. Nelson JA, Falk RE. The efficacy of phloridzin and phloretin on tumor cell growth. Anticancer research. 1993; 13(6A): 2287-2292.
145. Clem B, Telang S, Clem A, et al. Small-molecule inhibition of 6-phosphofructo-2-kinase activity suppresses glycolytic flux and tumor growth. Molecular cancer therapeutics. 2008; 7(1): 110-120. doi: 10.1158/1535-7163.MCT-07-0482
146. Nebeling LC, Miraldi F, Shurin SB, Lerner E. Effects of a ketogenic diet on tumor metabolism and nutritional status in pediatric oncology patients: Two case reports. J Am Coll Nutr. 1995; 14(2): 202-208. doi: 10.1080/07315724.1995.10718495
147. Liu AM, Xu Z, Shek FH, et al. miR-122 targets pyruvate kinase M2 and affects metabolism of hepatocellular carcinoma. PLoS One. 2014; 9(1): e86872. doi: 10.1371/journal.pone.0086872