Study of Analysis the Sensitivity of the Computational Environment for Radiological Research Field Size Based on Two Dimensional Dose Distribution for Water Phantom Cases

*Corresponding author: Yati Hardiyanti*, Thareq Barasabha, Choirul Anam, Novitrian Novitrian, Freddy Haryanto and Abdul Waris

Full-Text PDF:

original research

Abstract

Purpose

This study analysed the sensitivity of the field size from variations in the target volume dimensions, depth, and position. The variations in the target volume analysis were used to determine the width of the field size. Thus, the quality control of the radiation beam can be obtained.

Materials and Methods

The computed tomography (CT) image of the IBA Dose 1 type of water phantom consists of 350 slices. Variations in the dimension of the target volume were modelled in 10×10×10 cm3, 10×12×10 cm3, 10.2×10×10.2 cm3, and 15×15×15 cm3. Beam parameters use one beam of irradiation on the central axis 0°, 6 MV energy, 100 cm source-skin distance (SSD), beamlet delta x, and y set to 0.1 cm. Dose distribution in the form of the XZ isodose curve and dose profile was used to observe the field size.

Results

In this study, the isodose curve was successfully displayed in the XZ isodose curve. The field size’s sensitivity has been successfully reviewed from variations of the target volume, depth, and position. The target X and Z direction analysis is used in determining the width and length of the field size.

Conclusion

The analysis related to the field size sensitivity study was obtained from a relatively valid calculation. The field size was evaluated with variations in depth of 1.5 cm, 5 cm, 10 cm, and variations in positions of 10 cm, 12 cm, 14 cm, 18 cm, and 20 cm. This study will be used as a reference to validate the distribution of computational environment for radiotherapy research (CERR) dose in the future. Thus, the accuracy of the dose calculation can be obtained.

Keywords

2D Dose Distribution; Sensitivity; Quality control; Treatment planning system; Radiation therapy dosimetry.