1. van Pel DM, Barrett IJ, Shimizu Y, et al. An evolutionarily conserved synthetic lethal interaction network identifies FEN1 as a broad-spectrum target for anticancer therapeutic development. PLoS Genet. 2013; 9(1): e1003254. doi: 10.1371/journal.pgen.1003254
2. Bakhoum SF, Compton DA. Chromosomal instability and cancer: A complex relationship with therapeutic potential. J Clin Invest. 2012; 122(4): 1138-1143. doi: 10.1172/JCI59954
3. Ansari M, Krajinovic M. Pharmacogenomics in cancer treatment defining genetic bases for inter-individual differences in responses to chemotherapy. Curr Opin Pediatr. 2007; 19(1): 15-22. doi: 10.1097/MOP.0b013e3280140613
4. Weng L, Zhang L, Peng Y, Huang RS. Pharmacogenetics and pharmacogenomics: A bridge to individualized cancer therapy. Pharmacogenomics. 2013; 14(3): 315-324. doi: 10.2217/pgs.12.213
5. Cho S-H, Jeon J, Kim SI. Personalized medicine in breast cancer: A systematic review. J Breast Cancer. 2012; 15(3): 265-272. doi: 10.4048/jbc.2012.15.3.265
6. Minko T, Rodriguez-Rodriguez L, Pozharov V. Nanotechnology approaches for personalized treatment of multidrug resistant cancers. Adv Drug Deliv Rev. 2013; 65(13): 1880-1895. doi: 10.1016/j.addr.2013.09.017
7. Markman JL, Rekechenetskiy A, Holler E, Ljubimova JY. Nanomedicine therapeutic approaches to overcome cancer drug resistance. Adv Drug Deliv Rev. 2013; 65(13): 1866-1879. doi: 10.1016/j.addr.2013.09.019
8. Pathak HB, Zhou Y, Sethi G, et al. A synthetic lethality screen using a focused siRNA library to identify sensitizers to dasatinib therapy for the treatment of epithelial ovarian cancer. PLoS One. 2015; 10(12): e0144126. doi: 10.1371/journal.pone.0144126
9. Sun T-M, Du JZ, Yao YD, et al. Simultaneous delivery of siRNA and paclitaxel via a “two-in-one” micelleplex promotes synergistic tumor suppression. ACS Nano. 2011; 5(2): 1483-1494. doi: 10.1021/nn103349h