1. Faul MXL, Wald MM, Coronado V, Dellinger AM. Traumatic brain injury in the United States: National estimates of prevalence and incidence, 2002-2006. Injury Prevention. 2010; 16(1): 1. doi: 10.1136/ip.2010.029215.951
2. Thurman DJ, Alverson C, Dunn KA, Guerrero J, Sniezek JE. Traumatic brain injury in the United States: A public health perspective. J Head Trauma Rehabil. 1999;14(6): 602-615. doi: 10.1097/00001199-199912000-00009
3. Corrigan JD, Hammond FM. Traumatic brain injury as a chronic health condition. Arch Phys Med Rehabil. 2013; 94(6): 1199-1201.
doi: 10.1016/j.apmr.2013.01.023
4. Gardner RC, Langa KM, Yaffe K. Subjective and objective cognitive function among older adults with a history of traumatic brain injury: A population-based cohort study. PLoS Med. 2017; 14(3): e1002246. doi: 10.1371/journal.pmed.1002246
5. Cope EC, Morris DR, Scrimgeour AG, VanLandingham JW, Levenson CW. Zinc supplementation provides behavioral resiliency in a rat model of traumatic brain injury. Physiol Behav. 2011; 104(5): 942-947. doi: 10.1016/j.physbeh.2011.06.007
6. Mills JD, Bailes JE, Sedney CL, Hutchins H, Sears B. Omega-3 fatty acid supplementation and reduction of traumatic axonal injury in a rodent head injury model. J Neurosurg. 2011; 114(1): 77-84. doi: 10.3171/2010.5.JNS08914
7. Mills JD, Hadley K, Bailes JE. Dietary supplementation with the omega-3 fatty acid docosahexaenoic acid in traumatic brain injury. Neurosurgery. 2011; 68(2): 474-481. doi: 10.1227/NEU.0b013e3181ff692b
8. Moro N, Katayama Y, Igarashi T, Mori T, Kawamata T, Kojima J. Hyponatremia in patients with traumatic brain injury: Incidence, mechanism, and response to sodium supplementation or retention therapy with hydrocortisone. Surg Neurol. 2007; 68(4): 387-393.
doi: 10.1016/j.surneu.2006.11.052
9. Wu A, Ying Z, Gomez-Pinilla F. Dietary omega-3 fatty acids normalize BDNF levels, reduce oxidative damage, and counteract learning disability after traumatic brain injury in rats. J Neurotrauma. 2004; 21(10): 1457-1467. doi: 10.1089/neu.2004.21.1457
10. National Football League (NFL). Diagnosis and Management of Concussion. 2016.
11. NCAA. Concussion Diagnosis and Management Best Practices. NCAA Sports Science. 2016.
12. Putukian M. The acute symptoms of sport-related concussion: diagnosis and on-field management. Clin Sports Med. 2011; 30(1): 49-61.
doi: 10.1016/j.csm.2010.09.005
13. Schmid KE, Tortella FC. The diagnosis of traumatic brain injury on the battlefield. Front Neurol. 2012; 3: 90. doi: 10.3389%2Ffneur.2012.00090
14. Toman E, Harrisson S, Belli T. Biomarkers in traumatic brain injury: A review. J R Army Med Corps. 2016; 162(2): 103-108.
doi: 10.1136/jramc-2015-000517
15. Sharma R, Rosenberg A, Bennett ER, Laskowitz DT, Acheson SK. A blood-based biomarker panel to risk-stratify mild traumatic brain injury. PloS One. 2017; 12(3): e0173798. doi: 10.1371/journal. pone.0173798
16. Boeck CR, Carbonera LS, Milioli ME, et al. Mitochondrial respiratory chain and creatine kinase activities following trauma brain injury in brain of mice preconditioned with N-methyl-Daspartate. Mol Cell Biochem. 2013; 384(1-2): 129-137. doi: 10.1007/s11010-013-1790-8
17. Somer H, Kaste M, Troupp H, Konttinen A. Brain creatine kinase in blood after acute brain injury. J Neurol Neurosurg Psychiatry. 1975 Jun; 38(6): 572-576. doi: 10.1136/jnnp.38.6.572
18. Karkela J, Bock E, Kaukinen S. CSF and serum brain-specific creatine kinase isoenzyme (CK-BB), neuron-specific enolase (NSE) and neural cell adhesion molecule (NCAM) as prognostic markers for hypoxic brain injury after cardiac arrest in man. J Neurol Sci. 1993; 116(1): 100-109.
doi: 10.1016/0022-510x(93)90095-g
19. Cherry JD, Stein TD, Tripodis Y, et al. CCL11 is increased in the CNS in chronic traumatic encephalopathy but not in Alzheimer’s disease. PLoS One. 2017; 12(9): e0185541. doi: 10.1371/journal.pone.0185541
20. Piao CS, Stoica BA, Wu J, et al. Late exercise reduces neuroinflammation and cognitive dysfunction after traumatic brain injury. Neurobiol Dis. 2013; 54: 252-63. doi: 10.1016/j.nbd.2012.12.017
21. Glushakov AO, Glushakova OY, Korol TY, et al. Chronic upregulation of cleaved-caspase-3 associated with chronic myelin pathology and microvascular reorganization in the thalamus after traumatic brain injury in rats. Int J Mol Sci. 2018; 19(10). doi: 10.3390/ijms19103151
22. Itoh T, Imano M, Nishida S, et al. Exercise increases neural stem cell proliferation surrounding the area of damage following rat traumatic brain injury. J Neural Transm (Vienna). 2011; 118(2): 193-202. doi: 10.1007/s00702-010-0495-3
23. Kim H, Heo HI, Kim DH, et al. Treadmill exercise and methylphenidate ameliorate symptoms of attention deficit/hyperactivity disorder through enhancing dopamine synthesis and brain-derived neurotrophic factor expression in spontaneous hypertensive rats. Neurosci Lett. 2011; 504(1): 35-39. doi: 10.1016/j.neulet.2011.08.052
24. Griesbach GS, Gomez-Pinilla F, Hovda DA. Time window for voluntary exercise-induced increases in hippocampal neuroplasticity molecules after traumatic brain injury is severity dependent. J Neurotrauma. 2007; 24(7): 1161-7111. doi: 10.1089/neu.2006.0255
25. Weightman MM, Bolgla R, McCulloch KL, Peterson MD. Physical therapy recommendations for service members with mild traumatic brain injury. J Head Trauma Rehabil. 2010; 25(3): 206-218. doi: 10.1097/HTR.0b013e3181dc82d3
26. Yoon KJ, Kim DY. Immediate Effects of a single exercise on behavior and memory in the early period of traumatic brain injury in rats. Ann Rehabil Med. 2018; 42(5): 643-651. doi: 10.5535/arm.2018.42.5.643
27. Saraiva AL, Ferreira AP, Silva LF, et al. Creatine reduces oxidative stress markers but does not protect against seizure susceptibility after severe traumatic brain injury. Brain Res Bull. 2012; 87(2-3): 180-186. doi: 10.1016/j.brainresbull.2011.10.010
28. Ainsley Dean PJ, Arikan G, Opitz B, Sterr A. Potential for use of creatine supplementation following mild traumatic brain injury. Concussion. 2017; 2(2): Cnc34. doi: 10.2217/cnc-2016-0016
29. Freire Royes LF, Cassol G. The effects of creatine supplementation and physical exercise on traumatic brain injury. Mini Rev Med Chem. 2016; 16(1): 29-39. doi: 10.2174/1389557515666150722101926
30. Sakellaris G, Kotsiou M, Tamiolaki M, et al. Prevention of complications related to traumatic brain injury in children and adolescents with creatine administration: An open label randomized pilot study. J Trauma. 2006; 61(2): 322-329.
doi: 10.1097/01.ta.0000230269.46108.d5
31. Wu A, Ying Z, Gomez-Pinilla F. Oxidative stress modulates Sir2alpha in rat hippocampus and cerebral cortex. Eur J Neurosci. 2006; 23(10): 2573-2580. doi: 10.1111/j.1460-9568.2006.04807.x
32. Wang T, Van KC, Gavitt BJ, et al. Effect of fish oil supplementation in a rat model of multiple mild traumatic brain injuries. Restor Neurol Neurosci. 2013; 31(5): 647-659. doi: 10.3233/RNN130316
33. Sun GY, Simonyi A, Fritsche KL, et al. Docosahexaenoic acid (DHA): An essential nutrient and a nutraceutical for brain health and diseases. Prostaglandins Leukot Essent Fatty Acids. 2018; 136: 3-13. doi: 10.1016/j.plefa.2017.03.006
34. Suzuki K, Koike T. Mammalian Sir2-related protein (SIRT) 2-mediated modulation of resistance to axonal degeneration in slow wallerian degeneration mice: A crucial role of tubulin deacetylation. Neuroscience. 2007; 147(3): 599-612.doi: 10.1016/j.neuroscience.2007.04.059
35. Wu A, Ying Z, Gomez-Pinilla F. Omega-3 fatty acids supplementation restores mechanisms that maintain brain homeostasis in traumatic brain injury. J Neurotrauma. 2007; 24(10): 1587-1595. doi: 10.1089/neu.2007.0313
36. Fisone G, Borgkvist A, Usiello A. Caffeine as a psychomotor stimulant: mechanism of action. Cell Mol Life Sci. 2004; 61(7-8): 857-872.
doi: 10.1007/s00018-003-3269-3
37. Cuenca L, Gil-Martinez AL, Cano-Fernandez L, et al. Parkinson’s disease: A short story of 200-years. Histol Histopathol. 2018; 18073.
doi: 10.14670/HH-18-073
38. Lusardi TA, Lytle NK, Szybala C, Boison D. Caffeine prevents acute mortality after TBI in rats without increased morbidity. Exp Neurol. 2012; 234(1): 161-168. doi: 10.1016/j.expneurol.2011
39. Ning YL, Yang N, Chen X, et al. Chronic caffeine exposure attenuates blast-induced memory deficit in mice. Chin J Traumatol. 2015; 18(4): 204-211. doi: 10.1016/j.cjtee.2015.10.003
40. Kuzmin A, Johansson B, Gimenez L, Ogren SO, Fredholm BB. Combination of adenosine A1 and A2A receptor blocking agents induces caffeine-like locomotor stimulation in mice. Eur Neuropsychopharmacol. 2006; 16(2): 129-136. doi: 10.1016/j.euroneuro.2005.07.001
41. Astorino TA, Rohmann RL, Firth K. Effect of caffeine ingestion on one-repetition maximum muscular strength. Eur J Appl Physiol. 2008; 102(2): 127-132. doi: 10.1007/s00421-007-0557-x
42. Sachse KT, Jackson EK, Wisniewski SR, et al. Increases in cerebrospinal fluid caffeine concentration are associated with favorable outcome after severe traumatic brain injury in humans. J Cereb Blood Flow Metab. 2008; 28(2): 395-401. doi: 10.1038/sj.jcbfm.9600539
43. Adams JW, Alvarez VE, Mez J, et al. Lewy body pathology and chronic traumatic encephalopathy associated with contact sports. J Neuropathol Exp Neurol. 2018; 77(9): 757-768. doi: 10.1093/jnen/nly065
44. Pearce N, Gallo V, McElvenny D. Head trauma in sport and neurodegenerative disease: An issue whose time has come? Neurobiol Aging. 2015; 36(3): 1383-1389. doi: 10.1016/j.neurobiolaging.2014.12.024
45. Young JS, Hobbs JG, Bailes JE. The impact of traumatic brain injury on the aging brain. Curr Psychiatry Rep. 2016; 18(9): 81.
doi: 10.1007/s11920-016-0719-9
46. Owolabi JO, Olatunji SY, Olanrewaju AJ. Caffeine and cannabis effects on vital neurotransmitters and enzymes in the brain tissue of juvenile experimental rats. Ann Neurosci. 2017; 24(2): 65-73. doi: 10.1159%2F000475895
47. Essawy SS, Tawfik MK, Korayem HE. Effects of adenosine receptor antagonists in MPTP mouse model of parkinson’s disease: Mitochondrial DNA integrity. Arch Med Sci. 2017; 13(3): 659-669. doi: 10.5114/aoms.2017.67284
48. Fleet JC. What have genomic and proteomic approaches told us about vitamin D and cancer? Nutrition Reviews. 2007; 65(8 Pt 2): S127-S130. doi: 10.1111/j.1753-4887.2007.tb00340.x
49. Tripkovic L, Lambert H, Hart K, et al. Comparison of vitamin D2 and vitamin D3 supplementation in raising serum 25-hydroxyvitamin D status: A systematic review and meta-analysis. Am J Clin Nutr. 2012; 95(6): 1357-1364. doi: 10.3945/ajcn.111.031070
50. Jamall OA, Feeney C, Zaw-Linn J, et al. Prevalence and correlates of vitamin D deficiency in adults after traumatic brain injury. Clin Endocrinol (Oxf). 2016; 85(4): 636-644. doi: 10.1111/cen.13045
51. Cui C, Cui J, Jin F, et al. Induction of the vitamin D receptor attenuates autophagy dysfunction-mediated cell death following traumatic brain injury. Cell Physiol Biochem. 2017; 42(5): 1888-1896. doi: 10.1159/000479571
52. Hua F, Reiss JI, Tang H, et al. Progesterone and low-dose vitamin D hormone treatment enhances sparing of memory following traumatic brain injury. Horm Behav. 2012; 61(4): 642-651. doi: 10.1016/j.yhbeh.2012.02.017
53. Stein DG, Cekic MM. Progesterone and vitamin d hormone as a biologic treatment of traumatic brain injury in the aged. PM R. 2011; 3(6 Suppl 1): S100-S110. doi: 10.1016/j.pmrj.2011.03.010