1. World Health Organization. The world health report: reducing risks, promoting healthy life. Geneva, Switherland, 2002.
2. Yessoufou A, Nekoua MP, Gbankoto A, Mashalla Y, Moutairou K. Beneficial effects of omega-3 polyunsaturated fatty acids in gestational diabetes: consequences in macrosomia and adulthood obesity. Exp Diabetes Res. 2015. 2015: 1-11. doi: 10.1155/2015/731434
3. Nabavi SF, Bilotto S, Russo GL, et al. Omega-3 polyunsaturated fatty acids and cancer: Lessons learned from clinical trials. Cancer Metastasis Rev. 2015; 34(3): 359-380. doi: 10.1007/s10555-015-9572-2
4. Khawaja OA, Gaziano JM, Djousse L. N-3 fatty acids for prevention of cardiovascular disease. Curr Atheroscler Rep. 2014;16(11): 1477S-1482S. doi: 10.1007/s11883-014-0450-0
5. van den Elsen L, Garssen J, Willemsen L. Long chain n-3 polyunsaturated fatty acids in the prevention of allergic and cardiovascular disease. Curr Pharm Design. 2012. 18(16): 2375-2392. doi: 10.2174/138161212800165960
6. FAO-WHO. Fats and fatty acids in human nutrition: report of an expert consultation, fao food and nutrition paper #91, FAO, WHO: Geneva, Switherland, 2010.
7. Harris WS, Mozaffarian D, Rimm E, et al. Omega-6 fatty acids and risk for cardiovascular disease a science advisory from the american heart association nutrition subcommittee of the council on nutrition, physical activity, and metabolism; council on cardiovascular nursing; and council on epidemiology and prevention. Circulation. 2009; 119(6): 902-907. doi: 10.1161/CIRCULATIONAHA.108.191627
8. Weylandt KH, Serini S, Chen YQ, et al. Omega-3 polyunsaturated fatty acids: the way forward in times of mixed evidence. Biomed Res Int. 2015; 2015: 1-24. doi: 10.1155/2015/143109
9. Gruber F, Ornelas CM, Karner S, et al. Nrf2 deficiency causes lipid oxidation, inflammation, and matrix-protease expression in dha-supplemented and Uva-irradiated skin fibroblasts. Free Radic Biol Med. 2015; 88(Pt B): 439-451. doi: 10.1016/j.freeradbiomed.2015.05.006
10. Thomas MJ. Analysis of lipid peroxidation products in health and disease. In: Spickett CM, Forman H J, eds. Lipid oxidation in health and disease. Boca Raton: CRC Press, 2015: 137.
11. Pryor WA, Stanley JP. Letter: A suggested mechanism for the production of malonaldehyde during the autoxidation of polyunsaturated fatty acids. Nonenzymatic production of prostaglandin endoperoxides during autoxidation. J Org Chem. 1975; 40(24):3615-3617.
doi: 10.1021/jo00912a038
12. Pryor WA, Porter NA. Suggested mechanisms for the production of 4-hydroxy-2-240 nonenal from the autoxidation of polyunsaturated fatty acids. Free Radic Biol Med. 1990. 8(6):541-543. doi: 10.1016/0891-5849(90)90153-a
13. Esterbauer H, Benedetti A, Lang J, Fulceri R, Fauler G, Comporti M. Studies on themechanism of formation of 4-hydroxynonenal during microsomal lipid peroxidation. Biochim Biophys Acta. 1986; 876(1): 154-166. doi: 10.1016/0005-2760(86)90329-2
14. Esterbauer H, Schaur RJ, Zollner H. Chemistry and biochemistry of 4-246 hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med. 1991; 247 11(1): 81-128. doi: 10.1016/0891-5849(91)90192-6
15. Tanaka R, Shigeta K, Sugiura Y, Hatate H, Matsushita T. Accumulation of hydroxyl lipids and 4-hydroxy-2-hexenal in live fish infected with fish diseases. Lipids. 2014; 49(4): 385-396. doi: 10.1007/s11745-013-3875-2
16. Long EK, Picklo MJ, Sr. Trans-4-hydroxy-2-hexenal, a product of n-3 fatty acid peroxidation: Make some room hne. Free Radic Biol Med. 2010; 49(1): 1-8. doi: 10.1016/j.freeradbiomed.2010.03.015
17. Yamada S, Funada T, Shibata N, et al. Protein-bound 4-hydroxy-2-hexenal as a marker of oxidized n-3 polyunsaturated fatty acids. J Lipid Res. 2004; 45(4): 626-634. doi: 10.1194/jlr.M300376-JLR200
18. Matsushita S, Terao J. Singlet oxygen-initiated photooxidation of unsaturated fatty acid esters and inhibitory effects of tocopherols and beta-carotene. In: Simic MG, Karel M, eds. Autooxidation in food and biological systems. Springer US, 1980:27-44.
19. Frankel EN. Lipid oxidation. 2nd ed. Oily Press, 2005.
20. Foote CS. Photosensitized oxidation and singlet-oxygen: consequences in biological systems. In: Pryor WA, ed. Free radicals in biology.
New York: Academic Press, 1976: 85-133.
21. Stratton SP, Liebler DC. Determination of singlet oxygenspecific versus radical-263 mediated lipid peroxidation in photosensitized oxidation of lipid bilayers: effect of beta-264 carotene and alpha-tocopherol. Biochemistry. 1997; 36(42): 11-20. doi: 10.1021/bi9708646
22. Dennis EA, Cao J, Hsu YH, Magrioti V, Kokotos G. Phospholipase A2 enzymes: Physical structure, biological function, disease implication, chemical inhibition, and therapeutic intervention. Chem Rev. 2011; 111(10): 6130-6185. doi: 10.1021/cr200085w
23. Smith WL, Urade Y, Jakobsson PJ. Enzymes of the cyclooxygenase pathways of prostanoid biosynthesis. Chem Rev. 2011. 111(10): 5821-5865. doi: 10.1021/cr2002992
24. Smith WL, DeWitt DL, Garavito RM. Cyclooxygenases: structural, cellular, and molecular biology. Annu Rev Biochem.2000. 69: 145-182.
doi: 10.1146/annurev.biochem.69.1.145
25. Joo YC, Oh DK. Lipoxygenases: potential starting biocatalysts for the synthesis of signaling compounds. Biotechnol Adv.2012. 30(6): 1524-1532. doi: 10.1016/j.biotechadv.2012.04.004
26. Isobe Y, Arita M, Iwamoto R, et al. Stereochemical assignment and anti-inflammatory properties of the omega-3 lipid mediator resolvin E3. J Biochem. 2013; 153(4): 355-360. doi: 10.1093/jb/mvs151
27. Serhan CN, Clish CB, Brannon J, Colgan SP, Chiang N, Gronert K. Novel functional sets of lipid-derived mediators with antiinflammatory actions generated from omega-3 fatty acids via cyclooxygenase 2-nonsteroidal antiinflammatory drugs and transcellular processing. J Exp Med. 2000; 192(8): 1197-1204. doi: 10.1084/jem.192.8.1197
28. Arita M, Bianchini F, Aliberti J, et al. Stereochemical assignment, antiinflammatory properties, and receptor for the omega-3 lipid mediator resolvin E1. J Exp Med. 2005; 201(5): 713-722. doi: 10.1084/jem.20042031
29. Serhan CN, Hong S, Gronert K, et al. Resolvins: a family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals. J Exp Med. 2002. 196(8): 1025-1037. doi: 10.1084/jem.20020760
30. Ward PA. Resolvins on the way to resolution. J Exp Med. 2015; 212(8): 1142. doi: 10.1084/jem.2128insight4
31. Marcheselli VL, Hong S, Lukiw WJ, et al. Novel docosanoids inhibit brain ischemia- reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression. J Biol Chem. 2003; 278(44): 43807-43817. doi: 10.1074/jbc.M305841200
32. Mukherjee PK, Marcheselli VL, Serhan CN, Bazan NG. Neuroprotectin D1: A docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress. Proc Natl Acad Sci USA. 2004; 101(22): 8491-8496. doi: 10.1073/pnas.0402531101
33. Serhan CN, Gotlinger K, Hong S, et al. Anti-inflammatory actions of neuroprotectin d1/protectin d1 and its natural stereoisomers: assignments of dihydroxy-containing docosatrienes. J Immunol. 2006. 176(3): 1848-1859. doi: 10.4049/jimmunol.176.3.1848
34. Serhan CN, Yang R, Martinod K, et al. Maresins: novel macrophage mediators with potent antiinflammatory and proresolving actions. J Exp Med. 2009; 206(1): 15-23. doi: 10.1084/jem.20081880
35. Serhan CN, Dalli J, Karamnov S, et al. Macrophage proresolving mediator maresin 1 stimulates tissue regeneration and controls pain. FASEB journal. 2012; 26(4): 1755-1765. doi: 10.1096/fj.11-201442
36. Dalli J, Zhu M, Vlasenko NA, et al. The novel 13s, 14s-epoxy-aresin is converted by human macrophages to maresin 1 (MaR1), inhibits leukotriene A4 hydrolase (LTA4H), and shifts macrophage phenotype. FASEB journal. 2013; 27(7): 2573-2583. doi: 10.1096/fj.13-227728
37. Schmitz G, Ecker J. The opposing effects of n-3 and n-6 fatty acids. Prog Lipid Res. 2008; 47(2): 147-155. doi: 10.1016/j.plipres.2007.12.004
38. Fer M, Dreano Y, Lucas D, et al. Metabolism of eicosapentaenoic and docosahexaenoic acids by recombinant human cytochromes p450. Arch Biochem Biophys. 2008; 471(2): 116-125. doi: 10.1016/j.abb.2008.01.002
39. Racine RA, Deckelbaum RJ. Sources of the very-long-chain unsaturated omega-3 fatty acids: eicosapentaenoic acid and docosahexaenoic acid. Curr Opin Clin Nutr Metab Care. 2007; 10(2): 123-128. doi: 10.1097/MCO.0b013e3280129652
40. Kris-Etherton PM, Taylor DS, Yu-Poth S, et al. Polyunsaturated fatty acids in the food chain in the United States. Am J Clin Nutr. 2000; 71(1): 179s-88s. doi: 10.1093/ajcn/71.1.179s
41. Whelan J, Rust C. Innovative dietary sources of n-3 fatty acids. Annu Rev Nutr. 2006; 26: 75-103. doi: 10.1146/annurev. nutr.25.050304.092605
42. Gatrell SK, Kim J, Derksen TJ, O’Neil EV, Lei XG. Creating omega-3 fatty-acid-enriched chicken using defatted green microalgal biomass. J Agr Food Chem. 2015; 63(42): 9315-322. doi: 10.1021/acs.jafc.5b03137
43. Kolakowska A, Bartosz G. Oxidation of food components: an introduction. In: Bartosz G, ed. Food oxidants and antioxidants: chemical, biological and functional properties. Taylor & Francis Group, LLC, 2014: 9-10.
44. Let MB, Jacobsen C, Meyer AS. Sensory stability and oxidation of fish oil enriched milk is affected by milk storage temperature and oil quality. Int Dairy J. 2005; 15(2): 173-182. doi: 10.1016/j.idairyj.2004.06.003
45. Kao JW, Hammond EG, White PJ. Volatile compounds produced during deodorization of soybean oil and their flavor significance. J Am Oil Chem Soc. 1998; 75(9): 1103-1107. doi: 10.1007/s11746-998-0297-z
46. Min DB, Callison AL, Lee HO. Singlet oxygen oxidation for 2-pentylfuran and 2-329 pentenyfuran formation in soybean oil. J Food Sci. 2003; 68(4): 1175-1178. doi 10.1111/j.1365-2621.2003.tb09620.x
47. Mallia S, Escher F, Dubois S, Schieberle P, SchlichtherleCerny H. Characterizationand quantification of odor-active compounds in unsaturated fatty acid/conjugated linoleic acid (UFA/CLA)-enriched butter and in conventional butter during storage and induced oxidation. J Agr Food Chem. 2009; 57(16):7464-7672. doi: 10.1021/jf9002158
48. Arab-Tehrany E, Jacquot M, Gaiani C, Imran M, Desobry S, Linder M. Beneficial effects and oxidative stability of omega-3 long-chain polyunsaturated fatty acids. Trends Food Sci Tech. 2012; 25(1): 24-33. doi: 10.1016/j.tifs.2011.12.002
49. Jacobsen C, Hartvigsen K, Lund P, et al. Oxidation in fishoil-enriched mayonnaise 1. Assessment of propyl gallate as an antioxidant by discriminant partial least squares regression analysis. Eur Food Res Technol. 1999; 210(1): 13-30. doi: 10.1007/s002170050526
50. Buettner GR. The pecking order of free radicals and antioxidants: Lipid peroxidation, alpha-tocopherol, and ascorbate. Arch Biochem Biophys. 1993; 300(2): 535-543. doi: 10.1006/abbi.1993.1074
51. Serfert Y, Drusch S, Schwarz K. Chemical stabilisation of oils rich in long-chain polyunsaturated fatty acids during homogenisation, microencapsulation and storage. Food Chem. 2009; 113(4): 1106-1112. doi: 10.1016/j.foodchem.2008.08.079
52. Nielsen JH, Ostdal H, Andersen HJ. The influence of ascorbic acid and uric acid on the oxidative stability of raw and pasteurized milk. In: Morello MJ, Shahidi F, Ho CT, eds. Free radicals in food: Chemistry, nutrition and health effects. Washington, DC: ACS Symposium Series, American Chemical Society, 2002: 126-137. doi: 10.1021/bk-2002-0807.ch009
53. Rupasinghe HPV, Erkan N, Yasmin A. Antioxidant protection of eicosapentaenoic acid and fish oil oxidation by polyphenolic-enriched apple skin extract. J Agr Food Chem. 2010; 58(2): 1233-1239. doi: 10.1021/jf903162k
54. Arruda CS, Garcez WS, Barrera-Arellano D, Block JM. Industrial trial to evaluate the effect of oxygen concentration on overall quality of refined, bleached, and deodorized soybean oil in pet bottles. J Am Oil Chem Soc. 2006; 83(9): 797-802. doi: 10.1007/s11746-006-5017-y
55. Larsen H, Tellefsen SBG, Dahl AV. Quality of sour cream packaged in cups with different light barrier properties measured by fluorescence spectroscopy and sensory analysis. J Food Sci. 2009; 74(8): S345-S350. doi: 10.1111/j.1750-3841.2009.01303.x
56. Rosenfeld ME, Palinski W, Yla-Herttuala S, Butler S, Witztum JL. Distribution of oxidation specific lipid-protein adducts and apolipoprotein b in atherosclerotic lesions of varying severity from WHHL rabbits. Arteriosclerosis. 1990; 10(3): 336-349. doi: 10.1161/01.ATV.10.3.336
57. Palinski W, Yla-Herttuala S, Rosenfeld ME, et al. Antisera and monoclonal antibodies specific for epitopes generated during oxidative modification of low density lipoprotein. Arteriosclerosis. 1990. 10(3): 325-335. doi: 10.1161/01.ATV.10.3.325
58. Yoritaka A, Hattori N, Uchida K, Tanaka M, Stadtman ER, Mizuno Y. Immunohistochemical detection of 4-hydroxynonenal protein adducts in parkinson disease. Proc Natl Acad Sci USA. 1996; 93(7): 2696-2701. doi: 10.1073/pnas.93.7.2696
59. Shibata N, Nagai R, Uchida K, et al. Morphological evidence for lipid peroxidation and protein glycoxidation in spinal cords from sporadic amyotrophic lateral sclerosis patients. Brain Res. 2001; 917(1): 97-104. doi: 10.1016/S0006-8993(01)02926-2
60. Okamoto K, Toyokuni S, Uchida K, et al. Formation of 8-hydroxy-2’-deoxyguanosine and 4-hydroxy-2-nonenal-modified proteins in human renal-cell carcinoma. Int J Cancer. 1994; 58(6): 825-859. doi: 10.1002/ijc.2910580613
61. Zhong H, Yin H. Role of lipid peroxidation derived 4-ydroxynonenal (4-HNE) in cancer: Focusing on mitochondria. Redox Biol. 2015; 4: 193-199. doi: 10.1016/j.redox.2014.12.011
62. Uchida K, Shiraishi M, Naito Y, Torii Y, Nakamura Y, Osawa T. Activation of stress signaling pathways by the end product of lipid peroxidation. 4-hydroxy-2-nonenal is a potential inducer of intracellular peroxide production. J Biol Chem. 1999; 274(4):
2234-2242. doi: 10.1074/jbc.274.4.2234
63. Kondo M, Oya-Ito T, Kumagai T, Osawa T, Uchida K. Cyclopentenone prostaglandins as potential inducers of intracellular oxidative stress. J Biol Chem. 2001; 276(15): 12076-12083. doi: 10.1074/jbc.M009630200
64. Awada M, Soulage CO, Meynier A, et al. Dietary oxidized n-3 PUFA induce oxidative stress and inflammation: role of intestinal absorption of 4-HHE and reactivity in intestinal cells. J Lipid Res. 2012. 53(10): 2069-2080. doi: 10.1194/jlr.M026179
65. Jenkinson A, Franklin MF, Wahle K, Duthie GG. Dietary intakes of polyunsaturated fatty acids and indices of oxidative stress in human volunteers. Eur J Clin Nutr. 1999; 53(7): 523-528. doi: 10.1038/sj.ejcn.1600783
66. Fukuda A, Nakamura Y, Ohigashi H, Osawa T, Uchida K. Cellular response to the redox active lipid peroxidation products: induction of glutathione s-transferase p by 4-hydroxy2-nonenal. Biochem Biophys Res Commun. 1997; 236(2): 505-509. doi: 10.1006/bbrc.1997.6585
67. Tjalkens RB, Luckey SW, Kroll DJ, Petersen DR. Alpha, beta-unsaturated aldehydes mediate inducible expression of glutathione s-transferase in hepatoma cells through 393 activation of the antioxidant response element (ARE). Adv Exp Med Biol. 1999; 463: 123-131.
68. Anderson EJ, Thayne K, Harris M, Carraway K, Shaikh SR. Aldehyde stress and up-regulation of Nrf2-mediated antioxidant systems accompany functional adaptations in cardiac mitochondria from mice fed n-3 polyunsaturated fatty acids. Biochem J.2012; 441(1): 359-366.
doi: 10.1042/BJ20110626
69. Anderson EJ, Taylor DA. Stressing the heart of the matter: re-thinking the mechanisms underlying therapeutic effects of n-3 polyunsaturated fatty acids. F1000 medicine reports. 2012; 4: 13. doi: 10.3410/M4-13
70. Zhang Y, Sano M, Shinmura K, et al. 4-hydroxy-2-nonenal protects against cardiac ischemia-reperfusion injury via the Nrf2-dependent pathway. J Mol Cell Cardiol. 2010; 49(4): 576-586. doi: 10.1016/j.yjmcc.2010.05.011
71. Isobe Y, Arita M. Identification of novel omega-3 fatty acidderived bioactive metabolites based on a targeted lipidomics approach. J Clin Biochem Nutr. 2014; 55(2): 79-84. doi: 10.3164/jcbn.14-18
72. Hong S, Lu Y. Omega-3 fatty acid-derived resolvins and protectins in inflammation resolution and leukocyte functions: targeting novel lipid mediator pathways in mitigation of acute kidney injury. Front Immunol. 2013; 4: 13. doi: 10.3389/fimmu.2013.00013
73. Chiang N, Dalli J, Colas RA, Serhan CN. Identification of resolvin D2 receptor mediating resolution of infections and organ protection. J Exp Med. 2015; 212(8): 1203-1217. doi: 10.1084/jem.20150225
74. Deng B, Wang CW, Arnardottir HH, et al. Maresin biosynthesis and identification of maresin 2, a new anti-inflammatory and pro-resolving mediator from human macrophages. PLoS One. 2014; 9(7): e102362. doi: 10.1371/journal.pone.0102362
75. Bagga D, Wang L, Farias-Eisner R, Glaspy JA, Reddy ST. Differential effects of prostaglandin derived from omega-6 and omega-3 polyunsaturated fatty acids on COX-2 expression and IL-6 secretion. Proc Natl Acad Sci USA. 2003; 100(4): 1751-1756.
doi: 10.1073/pnas.0334211100