1. Rasooli I. Food preservation-a biopreservative approach. Food. 2007; 1: 111-136.
2. Izumi H. Current status of the fresh-cut produce industry and sanitizing technologies in Japan. International Conference on Quality Management of Fresh Cut Produce. 2007; 746: 45-52. doi: 10.17660/ActaHortic.2007.746.4
3. Roller S, Seedhar P. Carvacrol and cinnamic acid inhibit microbial growth in fresh-cut melon and kiwifruit at 4° and 8°C. Letters in Applied Microbiology. 2002; 35: 390-394. doi: 10.1046/j.1472-765X.2002.01209.x
4. Beuchat LR. Use of sanitizers in raw fruit and vegetable processing. In: Alzamora SM, Tapia MS, López-Malo A, eds. Minimally Processed Fruits and Vegetables. Berlin, Germany: Springer; 2000: 63-78.
5. Madden JM. Microbial pathogens in fresh produce-the regulatory perspective. Journal of Food Protection®. 1992; 55: 821-823.
doi: 10.4315/0362-028x-55.10.821
6. Beuchat L. Surface decontamination of fruits and vegetables eaten raw: A review. OMS. 1998.
7. Burt S. Essential oils: Their antibacterial properties and potential applications in foods-a review. International journal of food microbiology. 2004; 94: 223-253. doi: 10.1016/j.ijfoodmicro.2004.03.022
8. Ferreira J, Alves D, Neves O, Silva J, Gibbs P, Teixeira P. Effects of the components of two antimicrobial emulsions on food-borne pathogens. Food control. 2010; 21: 227-230. doi: 10.1016/j.foodcont.2009.05.018
9. Giatrakou V, Ntzimani A, Savvaidis I. Effect of chitosan and thyme oil on a ready to cook chicken product. Food microbiology. 2010; 27: 132-136. doi: 10.1016/j.fm.2009.09.005
10. Singh G, Maurya S, Catalan CA. A comparison of chemical, antioxidant and antimicrobial studies of cinnamon leaf and bark volatile oils, oleoresins and their constituents. Food and Chemical Toxicology. 2007; 45: 1650-1661. doi: 10.1016/j.fct.2007.02.031
11. Wang R, Wang R, Yang B. Extraction of essential oils from five cinnamon leaves and identification of their volatile compound compositions. Innovative Food Science & Emerging Technologies. 2009; 10: 289-292. doi: 10.1016/j.ifset.2008.12.002
12. Kim SH, Hyun SH, Choung SY. Anti-diabetic effect of cinnamon extract on blood glucose in db/db mice. Journal of ethnopharmacology. 2006; 104: 119-123. doi: 10.1016/j.jep.2005.08.059
13. Ping H, Zhang G, Ren G. Antidiabetic effects of cinnamon oil in diabetic KK-Ay mice. Food and chemical toxicology.2010; 48: 2344-2349.
doi: 10.1016/j.fct.2010.05.069
14. Özcan MM, Arslan D. Antioxidant effect of essential oils of rosemary, clove and cinnamon on hazelnut and poppy oils. Food chemistry. 2011; 129: 171-174. doi: 10.1016/j.foodchem.2011.01.055
15. Ghosh V, Mukherjee A, Chandrasekaran N. Eugenol-loaded antimicrobial nanoemulsion preserves fruit juice against, microbial spoilage. Colloids and Surfaces B: Biointerfaces. 2014; 114: 392-397. doi: 10.1016/j.colsurfb.2013.10.034
16. Chang Y, McLandsborough L, McClements DJ. Physical properties and antimicrobial efficacy of thyme oil nanoemulsions: influence of ripening inhibitors. Journal of agricultural and food chemistry. 2012; 60: 12056-12063. doi: 10.1021/jf304045a
17. Liang R, Xu S, Shoemaker CF, Li Y, Zhong F, Huang Q. Physical and antimicrobial properties of peppermint oil nanoemulsions. Journal of agricultural and food chemistry. 2012; 60: 7548-7555. doi: 10.1021/jf301129k
18. Pandit V, Shelef L. Sensitivity of Listeria monocytogenes to rosemary (Rosmarinus officinalis L.). Food Microbiology. 1994; 11: 57-63.
doi: 10.1006/fmic.1994.1008
19. McClements DJ. Food emulsions: Principles, practices, and techniques. CRC press. 2004. doi: 10.1201/9781420039436
20. Jo YJ, Chun JY, Kwon YJ, Min SG, Hong GP, Choi MJ. Physical and antimicrobial properties of trans-cinnamaldehyde nanoemulsions in water melon juice. LWT-Food Science and Technology. 2015; 60: 444-451. doi: 10.1016/j.lwt.2014.09.041
21. Tadros T, Izquieerdo R, Esquena J, Solons C. Formation and stability of nano-emulsions. Advances in Colloid and Interface Sciences. 2004; 108-109: 303-318. doi: 10.1016/j.cis.2003.10.023
22. Lin CY, Chen LW. Comparison of fuel properties and emission characteristics of two-and three-phase emulsions prepared by ultrasonically vibrating and mechanically homogenizing emulsification methods. Fuel. 2008; 87: 2154-2161. doi: 10.1016/j.fuel.2007.12.017
23. McClements DJ. Theoretical prediction of emulsion color. Advances in Colloid and Interface Science. 2002; 97: 63-89.
doi: 10.1016/S0001-8686(01)00047-1
24. Chang Y, McLandsborough L, McClements DJ. Physical properties and antimicrobial efficacy of thyme oil nanoemulsions: influence of ripening inhibitors. Journal of agricultural and food chemistry. 2012; 60: 12056-12063. doi: 10.1021/jf304045a
25. Dickinson E. Hydrocolloids at interfaces and the influence on the properties of dispersed systems. Food hydrocolloids. 2003; 17: 25-39.
doi: 10.1016/S0268-005X(01)00120-5
26. Ghosh V, Saranya S, Mukherjee A, Chandrasekaran N. Cinnamon oil nanoemulsion formulation by ultrasonic emulsification: investigation of its bactericidal activity. Journal of nanoscience and nanotechnology. 2013; 13: 114-122. doi: 10.1166/jnn.2013.6701
27. Silva HD, Cerqueira MÂ, Vicente AA. Nanoemulsions for food applications: Development and characterization. Food and Bioprocess Technology. 2012; 5: 854-867. doi: 10.1007/s11947-011-0683-7
28. Bhargava K, Conti DS, da Rocha SR, Zhang Y. Application of an oregano oil nanoemulsion to the control of foodborne bacteria on fresh lettuce. Food microbiology. 2015; 47: 69-73. doi: 10.1016/j.fm.2014.11.007
29. Landry KS, Micheli S, McClements DJ, McLandsborough L. Effectiveness of a spontaneous carvacrol nanoemulsion against Salmonella enterica Enteritidis and Escherichia coli O157: H7 on contaminated broccoli and radish seeds. Food Microbiology. 2015; 51: 10-17.
doi: 10.1016/j.fm.2015.04.006
30. Landry KS, Chang Y, McClements DJ, McLandsborough L. Effectiveness of a novel spontaneous carvacrol nanoemulsion against Salmonella enterica Enteritidis and Escherichia coliO157: H7 on contaminated mung bean and alfalfa seeds. International journal of food microbiology. 2014; 187: 15-21. doi: 10.1016/j.ijfoodmicro.2014.06.030
31. Severino R, Vu KD, Donsì F, Salmieri S, Ferrari G, Lacroix M. Antibacterial and physical effects of modified chitosan based-coating containing nanoemulsion of mandarin essential oil and three non-thermal treatments against Listeria innocua in green beans. International journal of food microbiology. 2014;191: 82-88. doi: 10.1016/j.ijfoodmicro.2014.09.007
32. Donsì F, Marchese E, Maresca P, et al. Green beans preservation by combination of a modified chitosan based-coating containing nanoemulsion of mandarin essential oil with high pressure or pulsed light processing. Postharvest Biology and Technology. 2015; 106, 21-32.
doi: 10.1016/j.postharvbio.2015.02.006
33. Kim IH, Lee H, Kim JE, et al. Plum coatings of lemongrass oil-incorporating carnauba wax-based nanoemulsion. Journal of food science. 2013; 78: E1551-E1559. doi: 10.1111/1750-3841.12244
34. Donsì F, AnnunziataM, Vincensi M, et al. Design of nanoemulsion-based delivery systems of natural antimicrobials: Effect of emulsifier. J Biotechnol. 2012; 159(4): 342-350. doi: 10.1016/j.jbiotec.2011.07.001
35. Sekhon BS. Food nanotechnology-an overview. Nanotechnology, science and applications. 2010; 3: 1. doi: 10.2147/NSA.S8677