1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015; 65(1): 5-29. doi: 10.3322/caac.21254
2.Ying H, Dey P,Yao W, et al. Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev. 2016; 30(4): 355-385. doi: 10.1101/gad.275776.115
3. Seymour AB, Hruban RH, Redston M, et al. Allelotype of pancreatic adenocarcinoma. Cancer Res. 1994; 54(10): 2761- 2764. Website. http://cancerres.aacrjournals.org/content/54/10 /2761.short. Accessed February 29, 2016.
4.Ruckert F, GrutzmannR, PilarskyC. Feedback within the intercellular communication and tumorigenesis in carcinomas. PLoS One. 2012; 7(5): e36719. doi: 10.1371/journal.pone.0036719
5. Chu GC, Kimmelman AC, Hezel AF, DePinho RA. Stromal biology of pancreatic cancer. J Cell Biochem. 2007. 101(4): 887- 907. doi: 10.1002/jcb.21209
6. Apte MV, Park S, Phillips PA, et al. Desmoplastic reaction in pancreatic cancer: role of pancreatic stellate cells. Pancreas. 2004; 29(3): 179-187. Website. http://journals.lww.com/ pancreasjournal/Abstract/2004/10000/Desmoplastic_Reaction_ in_Pancreatic_Cancer_Role.2.aspx. Accessed February 29, 2016.
7. Lunardi S, Muschel RJ, Brunner TB. The stromal compartments in pancreatic cancer: are there any therapeutic targets? Cancer Lett. 2014. 343(2): 147-155. doi: 10.1016/j.canlet.2013.09.039
8. Grzesiak JJ, Bouvet M. The alpha2beta1 integrin mediates the malignant phenotype on type I collagen in pancreatic cancer cell lines. Br J Cancer. 2006; 94(9): 1311-1319. doi: 10.1038/sj.bjc.6603088
9. Dangi-Garimella S, Krantz SB, Barron MR, et al. Three dimensional collagen I promotes gemcitabine resistance in pancreatic cancer through MT1-MMP-mediated expression of HMGA2. Cancer Res. 2011; 71(3): 1019-1028. doi: 10.1158/0008-5472.CAN-10-1855
10. Miyamoto H, Murakami T, Tsuchida K, Sugino H, Miyake H, Tashiro S, et al. Tumor-stroma interaction of human pancreatic cancer: acquired resistance to anticancer drugs and proliferation regulation is dependent on extracellular matrix proteins. Pancreas. 2004; 28(1): 38-44.
Website. http://journals.lww.com/pancreasjournal/Abstract/2004/01000/Tumor_Stroma_ Interaction_of_Human_Pancreatic.6.aspx. Accessed February 29, 2016.
11. Shintani Y, Hollingsworth MA, Wheelock MJ, Johnson KR. Collagen I promotes metastasis in pancreatic cancer by activating c-Jun NH(2)-terminal kinase 1 and up-regulating N-cadherin expression. Cancer Res. 2006; 66(24): 11745-11753. doi: 10.1158/0008-5472.CAN-06-2322
12. Imamichi Y, König A, Gress T, Menke A. Collagen type I-induced Smad-interacting protein 1 expression downregulates E-cadherin in pancreatic cancer. Oncogene. 2007; 26(16): 2381- 2385. doi: 10.1038/sj.onc.1210012
13. Shields MA, Dangi-Garimella S, Krantz SB, Bentrem DJ, Munshi HG. Pancreatic cancer cells respond to type I collagen by inducing snail expression to promote membrane type 1 matrix metalloproteinase-dependent collagen invasion. J Biol Chem. 2011; 286(12): 10495-10504. doi: 10.1074/jbc.M110.195628
14. Yang X, Staren ED, Howard JM, Iwamura T, Bartsch JE, Appert HE. Invasiveness and MMP expression in pancreatic carcinoma. J Surg Res. 2001; 98(1): 33-39. doi: 10.1006/jsre.2001.6150
15. Nagai S, Nakamura M, Yanai K, et al. Gli1 contributes to the invasiveness of pancreatic cancer through matrix metalloproteinase-9 activation. Cancer Sci. 2008. 99(7): 1377- 1384. doi: 10.1111/j.1349-7006.2008.00822.x
16. Murphy G, Docherty AJ. The matrix metalloproteinases and their inhibitors. Am J Respir Cell Mol Biol. 1992; 7(2): 120-125. doi: 10.1165/ajrcmb/7.2.120
17. Liotta LA, Tryggvason K, Garbisa S, Hart I, Foltz CM, Shafie S. Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature. 1980; 284(5751): 67-68. doi: 10.1038/284067a0
18. Maatta M, Soini Y, Liakka A, Autio-Harmainen H. Differential expression of matrix metalloproteinase (MMP)- 2, MMP-9, and membrane type 1-MMP in hepatocellular and pancreatic adenocarcinoma: implications for tumor progression and clinical prognosis. Clin Cancer Res. 2000; 6(7): 2726-2734. Website. http://clincancerres.aacrjournals.org/content/6/7/2726. long. Accessed February 29, 2016.
19. Ellenrieder V, Alber B, Lacher U, et al. Role of MTMMPs and MMP-2 in pancreatic cancer progression. Int J Cancer. 2000; 85(1): 14-20. doi: 10.1002/(SICI)1097- 0215(20000101)85:1<_x0031_4:_x003a_AID-IJC3>3.0.CO;2-O
20. Zhi YH, Song MM, Wang PL, Zhang T, Yin ZY. Suppression of matrix metalloproteinase-2 via RNA interference inhibits pancreatic carcinoma cell invasiveness and adhesion. World J Gastroenterol. 2009; 15(9): 1072-1078. doi: 10.3748/wjg.15.1072
21. Tan X, Egami H, Abe M, Nozawa F, Hirota M, Ogawa M. Involvement of MMP-7 in invasion of pancreatic cancer cells through activation of the EGFR mediated MEK-ERK signal transduction pathway. J Clin Pathol. 2005; 58(12): 1242-1248. doi: 10.1136/jcp.2004.025338
22.Li YJ, Wei ZM, Meng YX, Ji XR. Beta-catenin up-regulates the expression of cyclinD1, c-myc and MMP-7 in human pancreatic cancer: relationships with carcinogenesis and metastasis. World J Gastroenterol. 2005; 11(14): 2117-23. doi: 10.3748/wjg.v11.i14.2117
23. Mahlbacher V, Sewing A, Elsässer HP, Kern HF. Hyaluronan is a secretory product of human pancreatic adenocarcinoma cells. Eur J Cell Biol. 1992; 58(1): 28-34.
Website. http://europepmc.org/abstract/med/1644063. Accessed February 29, 2016.
24. Provenzano PP, Cuevas C, Chang AE, Goel VK, Von Hoff DD, Hingorani SR. Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell. 2012; 21(3): 418-429. doi: 10.1016/j.ccr.2012.01.007
25. Baril P, Gangeswaran R, Mahon PC, et al. Periostin promotes invasiveness and resistance of pancreatic cancer cells to hypoxia-induced cell death: role of the beta4 integrin and the PI3k pathway. Oncogene. 2007; 26(14): p. 2082-94. doi: 10.1038/sj.onc.1210009
26. Kanno A, Satoh K, Masamune A, et al. Periostin, secreted from stromal cells, has biphasic effect on cell migration and correlates with the epithelial to mesenchymal transition of human pancreatic cancer cells. Int J Cancer. 2008; 122(12): 2707-2718. doi: 10.1002/ijc.23332
27. Esposito I, Penzel R, Chaib-Harrireche M, et al. Tenascin C and annexin II expression in the process of pancreatic carcinogenesis. J Pathol. 2006; 208(5): 673-85. doi: 10.1002/path.1935
28. Jones FS, Jones PL. The tenascin family of ECM glycoproteins: structure, function, and regulation during embryonic development and tissue remodeling. Dev Dyn. 2000; 218(2): 235-59. doi: 10.1002/(SICI)1097-0177(200006)218:2<_x0032_35:_x003a_AID-DVDY2> 3.0.CO;2-G
29. Juuti A, Nordling S, Louhimo J, Lundin J, Haglund C. Tenascin C expression is upregulated in pancreatic cancer and correlates with differentiation. J Clin Pathol. 2004; 57(11): 1151-1155. doi: 10.1136/jcp.2003.015818
30. Paron I, Berchtold S, Vörös J, et al. Tenascin-C enhances pancreatic cancer cell growth and motility and affects cell adhesion through activation of the integrin pathway. PLoS One. 2011; 6(6): e21684. doi: 10.1371/journal.pone.0021684
31. Infante JR, Matsubayashi H, Sato N, et al. Peritumoral fibroblast SPARCexpression and patient outcome with resectable pancreatic adenocarcinoma. J Clin Oncol. 2007; 25(3): 319-325. doi: 10.1200/JCO.2006.07.8824
32. Mantoni TS, Schendel RR, Rödel F, et al. Stromal SPARCexpression and patient survival after chemoradiation for nonresectable pancreatic adenocarcinoma. Cancer Biol Ther. 2008; 7(11): 1806-1815. doi: 10.4161/cbt.7.11.6846
33.AlboD,BergerDH,VogelJ,TuszynskiGP.Thrombospondin-1 and transforming growth factor beta-1 upregulate plasminogen activator inhibitor type 1 in pancreatic cancer. J Gastrointest Surg. 1999; 3(4): 411-7. doi: 10.1016/S1091-255X(99)80058-4
34. Qian X, Rothman VL, Nicosia RF, Tuszynski GP. Expression of thrombospondin-1 in human pancreatic adenocarcinomas: role in matrix metalloproteinase-9 production. Pathol Oncol Res. 2001; 7(4): p. 251-259. doi: 10.1007/BF03032381
35. Apte MV, Pirola RC, Wilson JS. Pancreatic stellate cells: a starring role in normal and diseased pancreas. Front Physiol. 2012; 3: 344. doi: 10.3389/fphys.2012.00344
36. Bachem MG, Zhou S, Buck K, Schneiderhan W, Siech M. Pancreatic stellate cells–role in pancreas cancer. Langenbecks Arch Surg. 2008; 393(6): p. 891-900. doi: 10.1007/s00423-008- 0279-5
37. Bachem MG, Schünemann M, Ramadani M, et al. Pancreatic carcinoma cells induce fibrosis by stimulating proliferation and matrix synthesis of stellate cells. Gastroenterology. 2005; 128(4): 907-921. doi: 10.1053/j.gastro.2004.12.036
38. Fujita H, Ohuchida K, Mizumoto K, et al. Tumor-stromal interactions with direct cell contacts enhance proliferation of human pancreatic carcinoma cells. Cancer Sci. 2009; 100(12): 2309-2317. doi: 10.1111/j.1349-7006.2009.01317.x
39. Xu Z, Vonlaufen A, Phillips PA, et al. Role of pancreatic stellate cells in pancreatic cancer metastasis. Am J Pathol. 2010; 177(5): 2585-2596. doi: 10.2353/ajpath.2010.090899
40. Ino Y, Yamazaki-Itoh R, Shimada K, et al. Immune cell infiltration as an indicator of the immune microenvironment of pancreatic cancer. Br J Cancer. 2013; 108(4): 914-923. doi: 10.1038/bjc.2013.32
41. Ene-Obong A, Clear AJ, Watt J, et al. Activated pancreatic stellate cells sequester CD8+ T cells to reduce their infiltration of the juxtatumoral compartment of pancreatic ductal adenocarcinoma. Gastroenterology. 2013; 145(5): 1121-1132. doi: 10.1053/j.gastro.2013.07.025
42. Wang RF. Immune suppression by tumor-specific CD4+ regulatory T-cells in cancer. Semin Cancer Biol. 2006; 16(1): 73-79. doi: 10.1016/j.semcancer.2005.07.009
43. Bayne LJ, Beatty GL, Jhala N, et al. Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer. Cancer Cell. 2012; 21(6): 822-835. doi: 10.1016/j. ccr.2012.04.025
44. Chen R, Pan S, Ottenhof NA, et al. Stromal galectin-1 expression is associated with long-term survival in resectable pancreatic ductal adenocarcinoma. Cancer Biol Ther. 2012; 13(10): 899-907. doi: 10.4161/cbt.20842
45. Ma Y, Hwang RF, Logsdon CD, Ullrich SE. Dynamic mast cell-stromal cell interactions promote growth of pancreatic cancer. Cancer Res. 2013; 73(13): p. 3927-37. doi: 10.1158/0008- 5472
46. Ceyhan GO, Bergmann F, Kadihasanoglu M, et al. Pancreatic neuropathy and neuropathic pain–a comprehensive pathomorphological study of 546 cases. Gastroenterology. 2009; 136(1): 177-186. doi: 10.1053/j.gastro.2008.09.029
47. Koide N, Yamada T, Shibata R, et al. Establishment of perineural invasion models and analysis of gene expression revealed an invariant chain (CD74) as a possible molecule involved in perineural invasion in pancreatic cancer. Clin Cancer Res. 2006; 12(8): 2419-2426. doi: 10.1158/1078-0432. CCR-05-1852
48. Meduri F, Diana F, Merenda R, et al. Pancreatic cancer and retroperitoneal neural tissue invasion. It simplication for survival following radical surgery. Zentralbl Pathol. 1994; 140(3): 277- 279. Website. http://europepmc.org/abstract/med/7947636. Accessed February 29, 2016.
49. Zhu Z, Kleeff J, Kayed H, et al. Nerve growth factor and enhancement of proliferation, invasion, and tumorigenicity of pancreatic cancer cells. Mol Carcinog. 2002; 35(3): 138-47. doi: 10.1002/mc.10083
50. Li X, Wang Z, Ma Q, et al. Sonic hedgehog paracrine signaling activates stromal cells to promote perineural invasion in pancreatic cancer. Clin Cancer Res. 2014; 20(16): 4326-4338. doi: 10.1158/1078-0432
51. Miknyoczki SJ, Lang D, Huang L, Klein-Szanto AJ, Dionne CA, Ruggeri BA. Neurotrophins and Trk receptors in human pancreaticductal adenocarcinoma: expression patterns and effects on in vitro invasive behavior. Int J Cancer. 1999; 81(3): 417- 427.
doi: 10.1002/(SICI)1097-0215(19990505)81:3<_x0034_17:_x003a_AIDIJC16>3.0.CO;2-6
52. Zhu ZW, Friess H, Wang L, et al. Nerve growth factor exerts differential effects on the growth of human pancreatic cancer cells. Clin Cancer Res. 2001; 7(1): 105-112. Website. http:// clincancerres.aacrjournals.org/content/7/1/105.long. Accessed February 29, 2016.
53. Okada Y, Eibl G, Guha S, Duffy JP, Reber HA, Hines OJ. Nerve growth factor stimulates MMP-2 expression and activity and increases invasion by human pancreatic cancer cells. Clin Exp Metastasis. 2004; 21(4): 285-292. doi: 10.1023/B:CL IN.0000046131.24625.54
54.CeyhanGO,GieseNA,ErkanM, et al.The neurotrophic factor artemin promotes pancreatic cancer invasion. Ann Surg. 2006; 244(2): 274-281. doi: 10.1097/01.sla.0000217642.68697.55
55. Okada Y, Eibl G, Duffy JP, Reber HA, Hines OJ. Glial cellderived neurotrophic factor upregulates the expression and activation of matrix metalloproteinase-9 in human pancreatic cancer. Surgery. 2003; 134(2): 293-299. doi: 10.1067/msy.2003.239
56. Bailey JM, Swanson BJ, Hamada T, et al. Sonic hedgehog promotes desmoplasia in pancreatic cancer. Clin Cancer Res. 2008; 14(19): 5995-6004. doi: 10.1158/1078-0432.CCR-08- 0291
57. Onishi H, Katano M. Hedgehog signaling pathway as a new therapeutic target in pancreatic cancer. World J Gastroenterol. 2014; 20(9): 2335-2342. doi: 10.3748/wjg.v20.i9.2335
58. Hwang RF, Moore TT, Hattersley MM, et al. Inhibition of the hedgehog pathway targets the tumor-associated stroma in pancreatic cancer. Mol Cancer Res. 2012; 10(9): 1147-1157. doi: 10.1158/1541-7786
59. Feldmann G, Habbe N, Dhara S, et al. Hedgehog inhibition prolongs survival in a genetically engineered mouse model of pancreatic cancer. Gut. 2008; 57(10): 1420-1430. doi: 10.1136/gut.2007.148189
60. Olive KP, Jacobetz MA, Davidson CJ, et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science. 2009; 324(5933): 1457-1461. doi: 10.1126/science.1171362
61. Tahara H, Sato K, Yamazaki Y, et al. Transforming growth factor-alpha activates pancreatic stellate cells and may be involved in matrix metalloproteinase-1 upregulation. Lab Invest. 2013; 93(6): 720-732. doi: 10.1038/labinvest.2013.59
62. Heldin CH, Miyazono K, ten Dijke P. TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature. 1997; 390(6659): 465-71. doi: 10.1038/37284
63. Hansel DE, Kern SE, Hruban RH. Molecular pathogenesis of pancreatic cancer. Annu Rev Genomics Hum Genet. 2003; 4: 237-56. doi: 10.1146/annurev.genom.4.070802.110341
64. Bardeesy N, Cheng KH, Berger JH, et al. Smad4 is dispensable for normal pancreas development yet critical in progression and tumor biology of pancreas cancer. Genes Dev. 2006; 20(22): 3130-3146. doi: 10.1101/gad.1478706
65. He J, Sun X, Qian KQ, Liu X, Wang Z, Chen Y. Protection of cerulein-induced pancreatic fibrosis by pancreas-specific expression of Smad7. Biochim Biophys Acta. 2009; 1792(1): 56- 60. doi: 10.1016/j.bbadis.2008.10.010
66. Rhim AD, Oberstein PE, Thomas DH, et al. Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell. 2014; 25(6): 735-747. doi: 10.1016/j.ccr.2014.04.021
67. Von Hoff DD, Ramanathan RK, Borad MJ, et al. Gemcitabine plus nab-paclitaxel is an active regimen in patients with advanced pancreatic cancer: a phase I/II trial. J Clin Oncol. 2011; 29(34): 4548-4554. doi: 10.1200/JCO.2011.36.5742
68. Yardley DA. nab-Paclitaxel mechanisms of action and delivery. J Control Release. 2013; 170(3): 365-72. doi: 10.1016/j. jconrel.2013.05.041
69. Masamune A, Hamada S, Kikuta K, et al. The angiotensin II type I receptor blocker olmesartan inhibits the growth of pancreatic cancer by targeting stellate cell activities in mice. Scand J Gastroenterol. 2013; 48(5): 602-609. doi: 10.3109/00365521.2013.777776
70. Beatty GL, Torigian DA, Chiorean EG, et al. A phase I study of an agonist CD40 monoclonal antibody (CP-870,893) in combination with gemcitabine in patients with advanced pancreatic ductal adenocarcinoma. Clin Cancer Res. 2013; 19(22): 6286-6295. doi: 10.1158/1078-0432