1. Michalopoulos GK, DeFrances MC. Liver regeneration. Science. 1997; 276(5309): 60-66. doi: 10.1126/science.276.5309.60
2. Mitchell C, Willenbring H. A reproducible and well-tolerated method for 2/3 partial hepatectomy in mice. Nat Protoc. 2008. 3(7): 1167-1170. doi: 10.1038/nprot.2008.80
3. Fausto N, Campbell JS, Riehle KJ. Liver regeneration. Hepatology. 2006; 43(2 Suppl 1): S45-S53. doi: 10.1002/hep.20969
4. Michalopoulos GK. Liver regeneration after partial hepatectomy: critical analysis of mechanistic dilemmas. Am J Pathol. 2010; 176(1): 2-13. doi: 10.2353/ajpath.2010.090675
5. Miyajima A, Tanaka M, Itoh T. Stem/progenitor cells in liver development, homeostasis, regeneration, and reprogramming. Cell Stem Cell. 2014; 14(5): 561-574. doi: 10.1016/j.stem.2014.04.010
6. Miyaoka Y, Ebato K, Kato H, Arakawa S, Shimizu S, Miyajima A. Hypertrophy and unconventional cell division of hepatocytes underlie liver regeneration. Curr Biol. 2012; 22(13): 1166-1175. doi: 10.1016/j.cub.2012.05.016
7. Alison, MR, Islam S, Lim S. Stem cells in liver regeneration, fibrosis and cancer: the good, the bad and the ugly. J Pathol. 2009; 217(2): 282-298. doi: 10.1002/path.2453
8. Su AI, Guidotti LG, Pezacki JP, Chisari FV, Schult PG. Gene expression during the priming phase of liver regeneration after partial hepatectomy in mice. Proc Natl Acad Sci USA. 2002; 99(17): 11181-11186. doi: 10.1073/pnas.122359899
9. Thomson AW, Knolle PA. Antigen-presenting cell function in the tolerogenic liver environment. Nat Rev Immunol. 2010; 10(11): 753-766. doi: 10.1038/nri2858
10. Yin, C, Evason KJ, Asahina K, Stainier DY. Hepatic stellate cells in liver development, regeneration, and cancer. J Clin Invest. 2013; 123(5): 1902-1910. doi: 10.1172/JCI66369
11. Tremblay KD, Zaret KS. Distinct populations of endoderm cells converge to generate the embryonic liver bud and ventral foregut tissues. Dev Biol. 2005; 280(1): 87-99. doi: 10.1016/j.ydbio.2005.01.003
12. Matsumoto K, Miki R, Nakayama M, Tatsumi N, Yokouchi Y. Wnt9a secreted from the walls of hepatic sinusoids is essential for morphogenesis, proliferation, and glycogen accumulation of chick hepatic epithelium. Dev Biol. 2008; 319(2): 234-247. doi: 10.1016/j.ydbio.2008.04.021
13. Houssaint E. Differentiation of the mouse hepatic primordium. I. An analysis of tissue interactions in hepatocyte differentiation. Cell Differ. 1980; 9(5): 269-279. doi: 10.1016/0045-6039(80)90026-3
14. Medlock ES, Haar JL. The liver hemopoietic environment: II. Peroxidase reactive mouse fetal liver hemopoietic cells. Anat Rec. 1983; 207(1): 43-53. doi: 10.1002/ar.1092070106
15. Asahina K, Tsai SY, Li P, et al. Mesenchymal origin of hepatic stellate cells, submesothelial cells, and perivascular mesenchymal cells during mouse liver development. Hepatology. 2009; 49(3): 998-1011. doi: 10.1002/hep.22721
16. Lemaigre FP. Development of the biliary tract. Mech Dev. 2003; 120(1): 81-87. doi: 10.1016/S0925-4773(02)00334-9
17. McLin VA, Rankin SA, Zorn AM. Repression of Wnt/beta-catenin signaling in the anterior endoderm is essential for liver and pancreas development. Development. 2007; 134(12): 2207-2217. doi: 10.1242/dev.001230
18. Dessimoz J, Opokaa R, Kordicha JJ, Grapin-Bottonb A, Wells JM. FGF signaling is necessary for establishing gut tube domains along the anterior-posterior axis in vivo. Mech Dev. 2006; 123(1): 42-55. doi: 10.1016/j.mod.2005.10.001
19. Monga SP, Monga HK, Tan X, Mulé K, Pediaditakis P, Michalopoulos GK. Beta-catenin antisense studies in embryonic liver cultures: role in proliferation, apoptosis, and lineage specification. Gastroenterology. 2003; 124(1): 202-216. doi: 10.1053/gast.2003.50000
20. Ober EA, Verkade H, Field HA, Stainier DYR. Mesodermal Wnt2b signalling positively regulates liver specification. Nature. 2006; 442(7103): 688-691. doi: 10.1038/nature04888
21. Poulain M, Ober EA. Interplay between Wnt2 and Wnt2bb controls multiple steps of early foregut-derived organ development. Development. 2011; 138(16): 3557-3568. doi: 10.1242/dev.055921
22. Itoh HYT, Miyajima A. Hedgehog signal activation coordinates proliferation and differentiation of fetal liver progenitor cells. Exp Cell Res. 2009; 315(15): 2648-2657. doi: 10.1016/j.yexcr.2009.06.018
23. Zong Y, Panikkar A, Xu J, et al. Notch signaling controls liver development by regulating biliary differentiation. Development. 2009; 136(10): 1727-1739. doi: 10.1242/dev.029140
24. Geisler F, Nagl F, Mazur PK, et al. Liver-specific inactivation of Notch2, but not Notch1, compromises intrahepatic bile duct development in mice. Hepatology. 2008; 48(2): 607-616. doi: 10.1002/hep.22381
25. Yanger K, Knigin D, Zong Y, et al. Adult hepatocytes are generated by self-duplication rather than stem cell differentiation. Cell Stem Cell. 2014; 15(3): 340-349. doi: 10.1016/j.stem.2014.06.003
26. Taub R. Liver regeneration: from myth to mechanism. Nat Rev Mol Cell Biol. 2004; 5(10): 836-847. doi: 10.1038/nrm1489
27. Gielchinsky Y, Laufer N, Weitman E, et al. Pregnancy restores the regenerative capacity of the aged liver via activation of an mTORC1-controlled hyperplasia/hypertrophy switch. Genes Dev. 2010; 24(6): 543-548. doi: 10.1101/gad.563110
28. Ding BS, Cao Z, Lis R, et al. Divergent angiocrine signals from vascular niche balance liver regeneration and fibrosis. Nature. 2014; 505(7481): 97-102. doi: 10.1038/nature12681
29. Ding BS, Nolan DJ, Butler JM, et al. Inductive angiocrine signals from sinusoidal endothelium are required for liver regeneration. Nature. 2010; 468(7321): 310-315. doi: 10.1038/nature09493
30. Hu J, Srivastava K, Wieland M, et al. Endothelial cell-derived angiopoietin-2 controls liver regeneration as a spatiotemporal rheostat. Science. 2014; 343(6169): 416-419. doi: 10.1126/science.1244880
31. Cressman DE, Greenbaum LE, DeAngelis RA, et al. Liver failure and defective hepatocyte regeneration in interleukin-6-deficient mice. Science. 1996; 274(5291): 1379-1383. doi: 10.1126/science.274.5291.1379
32. Huang W, Ma K, Zhang J, et al. Nuclear receptor-dependent bile acid signaling is required for normal liver regeneration. Science. 2006; 312(5771): 233-236. doi: 10.1126/science.1121435
33. Weglarz TC, Sandgren EP. Timing of hepatocyte entry into DNA synthesis after partial hepatectomy is cell autonomous. Proc Natl Acad Sci USA. 2000; 97(23): 12595-12600. doi: 10.1073/pnas.220430497
34. Factor VM, Radaeva SA, Thorgeirsson SS. Origin and fate of oval cells in dipin-induced hepatocarcinogenesis in the mouse. Am J Pathol. 1994; 145(2): 409-422.
35. Shin D, Shin CH, Tucker J, et al. Bmp and Fgf signaling are essential for liver specification in zebrafish. Development. 2007; 134(11): 2041-2050. doi: 10.1242/dev.000281
36. Jung J, Zheng M, Goldfarb M, Zaret KS. Initiation of mammalian liver development from endoderm by fibroblast growth factors. Science. 1999; 284(5422): 1998-2003. doi: 10.1126/science.284.5422.1998
37. Nejak-BowenK, Monga SP. Wnt/beta-catenin signaling in hepatic organogenesis. Organogenesis. 2008; 4(2): 92-99. doi: 10.4161%2Forg.4.2.5855
38. Tanimizu N, Miyajima A. Notch signaling controls hepatoblast differentiation by altering the expression of liver-enriched transcription factors. J Cell Sci. 2004; 117(Pt 15): 3165-3174. doi: 10.1242/jcs.01169
39. Li L, Krantz ID, Deng Y, et al. Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for Notch1. Nat Genet. 1997; 16(3): 243-251. doi: 10.1038/ng0797-243
40. Godwin JW, Pinto AR, Rosenthal NA. Macrophages are required for adult salamander limb regeneration. Proc Natl Acad Sci USA. 2013; 110(23): 9415-9420. doi: 10.1073/pnas.1300290110
41. Meijer C, Pintoa AR, 41. Rosenthal NA. Kupffer cell depletion by CI2MDP-liposomes alters hepatic cytokine expression and delays liver regeneration after partial hepatectomy. Liver. 2000; 20(1): 66-77. doi: 10.1034/j.1600-0676.2000.020001066.x
42. Yang J, Mowry LE, Nejak-Bowen KN, et al. beta-catenin signaling in murine liver zonation and regeneration: a Wnt-Wnt situation! Hepatology. 2014; 60(3): 964-976. doi: 10.1002/hep.27082
43. Amini-Nik S, Elizabeth Cambridge, Winston Yu, et al. beta-Catenin-regulated myeloid cell adhesion and migration determine wound healing. J Clin Invest. 2014; 124(6): 2599-2610. doi: 10.1172/jci62059
44. Lesage G, Glaser SS, Gubba S, et al. Regrowth of the rat biliary tree after 70% partial hepatectomy is coupled to increased secretin-induced ductal secretion. Gastroenterology. 1996; 111(6): 1633-1644. doi: 10.1016/s0016-5085(96)70027-6
45. Boulter L, Govaere O, Bird TG, et al. Macrophage-derived Wnt opposes Notch signaling to specify hepatic progenitor cell fate in chronic liver disease. Nat Med. 2012; 18(4): 572-579. doi: 10.1038/nm.2667
46. Kordes C, Haussinger D. Hepatic stem cell niches. J Clin Invest. 2013; 123(5): 1874-1880. doi: 10.1172/JCI66027
47. Kordes C, Sawitza I, Müller-Marbach A, et al. CD133+ hepatic stellate cells are progenitor cells. Biochem Biophys Res Commun. 2007; 352(2): 410-417. doi: 10.1016/j.bbrc.2006.11.029
48. Yang, L, Jung Y, Omenetti A, et al. Fate-mapping evidence that hepatic stellate cells are epithelial progenitors in adult mouse livers. Stem Cells. 2008; 26(8): 2104-2113. doi: 10.1634/stemcells.2008-0115
49. Krizhanovsky V, Yon M, Dickins RA, et al. Senescence of activated stellate cells limits liver fibrosis. Cell. 2008; 134(4): 657-667. doi: 10.1016/j.cell.2008.06.049
50. Kalinichenko VV, Bhattacharyya D, Zhou Y, et al. Foxf1 +/- mice exhibit defective stellate cell activation and abnormal liver regeneration following CCl4 injury. Hepatology. 2003; 37(1): 107-117. doi: 10.1053/jhep.2003.50005
51. Pintilie DG, Shupe TD, Oh SH, et al. Hepatic stellate cells’ involvement in progenitor-mediated liver regeneration. Lab Invest. 2010; 90(8): 1199-1208. doi: 10.1038/labinvest.2010.88
52. Ochoa B, Syn WK, Delgado I, et al. Hedgehog signaling is critical for normal liver regeneration after partial hepatectomy in mice. Hepatology. 2010; 51(5): 1712-1723. doi: 10.1002/hep.23525
53. Hadem J, Bockmeyer CL, Lukasz A, et al. Angiopoietin-2 in acute liver failure. Crit Care Med. 2012; 40(5): 1499-1505. doi: 10.1097/CCM.0b013e318241e34e
54. Simmonds PC, Primrose JN, Colquitt JL, et al. Surgical resection of hepatic metastases from colorectal cancer: a systematic review of published studies. Br J Cancer. 2006; 94(7): 982-999. doi: 10.1038/sj.bjc.6603033
55. Clavien PA, Petrowsky H, DeOliveira ML, Graf R. Strategies for safer liver surgery and partial liver transplantation. N Engl J Med. 2007; 356(15): 1545-1559. doi: 10.1056/NEJMra065156
56. Van Cutsem E, Nordlinger B, Adam R, et al. Towards a pan-European consensus on the treatment of patients with colorectal liver metastases. Eur J Cancer. 2006; 42(14): 2212-2221. doi: 10.1016/j.ejca.2006.04.012
57. Kishi Y, Abdalla EK, Chun YS, et al. Three hundred and one consecutive extended right hepatectomies: evaluation of outcome based on systematic liver volumetry. Ann Surg. 2009; 250(4): 540-548. doi: 10.1097/SLA.0b013e3181b674df
58. Kopetz S, e Chang GJ, Overman MJ, t al. Improved survival in metastatic colorectal cancer is associated with adoption of hepatic resection and improved chemotherapy. J Clin Oncol. 2009; 27(22): 3677-3683. doi: 10.1200/JCO.2008.20.5278
59. Abdalla EK, Adam R, Bilchik AJ, Jaeck D, Vauthey JN, Mahvi D. Improving resectability of hepatic colorectal metastases: expert consensus statement. Ann Surg Oncol. 2006; 13(10): 1271-1280. doi: 10.1245/s10434-006-9045-5
60. Jeschke MG. The hepatic response to thermal injury: is the liver important for postburn outcomes? Mol Med. 2009; 15(9-10): 337-351. doi: 10.2119/molmed.2009.00005