Yutang Wang, PhD

Senior Lecturer
School of Applied and Biomedical Sciences
Faculty of Science and Technology
Federation University Australia
Mt Helen, VIC, 3353, Australia



• (2000-2003), PhD. Major Physiology. Department of Physiology, Chinese Academy of Medical Sciences, Beijing, China
• (1997-2000), Masters Degree in Medicine. Major: Pharmacology. Department of Pharmacology, Beijing University of Chinese Medicine and Pharmacology, Beijing, China
• (1993-1997), Bachelors Degree in Science. Major: Pharmaceutics. Department of Pharmacology, Shandong University of Chinese Medicine and Pharmacology, Jinan, China


• (September 2014-Present), Senior Lecturer in Biomedical Science, School of Applied and Biomedical Sciences, Federation University Australia, Mt Helen, Australia
• (August 2011-August 2014), Postdoctoral Scientist, Queensland Research Centre for Peripheral Vascular Disease, School of Medicine and Dentistry, James Cook University, Townsville, Australia
• (October 2006-July 2011), Postdoctoral Scientist, Centre for Vascular Research, Discipline of Pathology, The University of Sydney, Sydney, Australia
• (August 2004-October 2006), Postdoctoral Scientist, Centre for Vascular Research, Department of Pathology, The University of New South Wales, Sydney, Australia

Research Interest

His research interests include: Hypertension, Renal failure, Renal sympathetic nerves, Vascular disorders.

Scientific Activities


• High Blood Pressure Research Council of Australia
• Australian Atherosclerosis Society
• Australian Vascular Biology Society


1. Wang Y. Ethnicity and sympathetic tone: predictors of the blood-pressure response to renal denervation? . Nature Reviews Cardiology. 2014; 11: 638. doi: 10.1038/nrcardio.2014.70-c1
2. Wang Y. Letter by Wang regarding article, Renal Denervation for the Treatment of Cardiovascular High Risk-Hypertension or Beyond? Circulation Research. 2014; 115: e18. doi: 10.1161/CIRCRESAHA.114.304917
3. Wang Y. What is the true incidence of renal artery stenosis after sympathetic denervation? . Frontiers in Integrative Physiology. 2014; 5: 311. doi: http://dx.doi.org/10.3389/fphys.2014.00311
4. Wang Y. Ambulatory blood pressure may be designed as the primary efficacy outcome in clinical trials on renal denervation. International Journal of Cardiology. 2014; 176: 1262-1263. doi: 10.1016/j.ijcard.2014.07.192
5. Wang Y. Single-sided renal denervation may be not suitable for patients with significant renal artery stenosis. Clinical Research in Cardiology. 2014; 2014; 103: 950-951. doi: 10.1007/s00392-014-0741-z
6. Wang Y, TI Emeto, Lee J, et al. Mouse models of intracranial aneurysm. Brain Pathology. 2014. doi: 10.1111/bpa.12175
7. Wang Y, Krishna SM, Moxon J, et al. Influence of apolipoprotein E, age and aortic site on calcium phosphate induced abdominal aortic aneurysm in mice. Atherosclerosis. 2014; 235: 204-212. doi: 10.1016/j.atherosclerosis.2014.04.033
8. Wang Y. Renal denervation for resistant hypertension-the Symplicity HTN-1 study. Lancet. 2014; 383: 1885. doi: 10.1016/S0140-6736(14)60912-0
9. Wang Y. Re: Renal denervation: the Irish experience. Hellenic Journal of Cardiology. 2014; 55: 516.
10. Wang Y. It may be not suitable to perform renal denervation in renal arteries with significant stenosis. International Journal of Cardiology . 2014; 174: 750. doi: 10.1016/j.ijcard.2014.04.087
11. Wang Y. Patients with renal artery stenosis may not be suitable for renal denervation. Clinical Research in Cardiology. 2014; 103: 585-586. doi: 10.1007/s00392-014-0700-8
12. Wang Y. Limitations in current clinical trials on renal denervation. International Journal of Cardiology. 2014; 174: 225. doi: http://dx.doi.org/10.1016/j.ijcard.2014.04.054
13. Wang Y. Renal artery stenosis may be responsible for the gradual return of high blood pressure after renal denervation. Journal of Clinical Hypertension. 2014; 16: 313.
14. Biros E, Moran CS, Wang Y, Walker PJ, Cardinal J, Golledge J. MicroRNA profiling in patients with abdominal aortic aneurysms: the significance of miR-155. Clinical Science. 2014; 126: 795-803. doi: 10.1042/CS20130599.
15. Wang Y. More research is needed to investigate the effect of denervation on blood pressure. Hypertension. 2014; 63: e85. doi: 10.1161/HYPERTENSIONAHA.113.03042
16. Wang Y. It is urgent to investigate predictors of the response of blood pressure to renal denervation. Canadian Journal of Cardiology. 2014; 30(4): 465.e7. doi: http://dx.doi.org/10.1016/j.cjca.2013.12.028
17. Wang Y, Seto SW, Golledge J. Angiotensin II, sympathetic nerve activity and chronic heart failure. Heart Failure Reviews. 2014; 19: 187-198. doi: 10.1007/s10741-012-9368-1.
18. Y Shen, Ward NC, Hodgson JM, et al. Dietary quercetin attenuates oxidant-induced endothelial dysfunction and atherosclerosis in apolipopfrotein E knockout mice fed a high-fat diet: A critical role for heme oxygenase-1. Free Radic Biol Med. 2013; 65: 908-915. doi: http://dx.doi.org/10.1016/j.freeradbiomed.2013.08.185
19. Wang Y, Denton K, Golledge J. Control of salt and volume retention cannot be ruled out as a mechanism underlying the blood pressure-lowering effect of renal denervation. Hypertension Research. 2013; 36: 1006-1007. doi: 10.1038/hr.2013.82
20. Wang Y, Seto SW, Golledge J. Therapeutic effects of renal denervation on renal failure. Curr Neurovasc Res. 2013; 10: 172-184. doi: 10.2174/1567202611310020010
21. Wang Y, Golledge J. Neuronal nitric oxide synthase and sympathetic nerve activity in neurovascular and metabolic systems. Curr Neurovasc Res. 2013; 10: 81-89. doi: 10.2174/1567202611310010011#sthash.am2YF1gy.dpuf
22. Wang Y, Krishna S, Golledge J. The calcium chloride-induced rodent model of abdominal aortic aneurysm. Atherosclerosis. 2013; 226: 29-39. doi: 10.1016/j.atherosclerosis.2012.09.010
23. Wang Y, Tikellis C, Thomas M, Golledge J. Angiotensin converting enzyme 2 and atherosclerosis. Atherosclerosis. 2013; 226: 3-8. doi: 10.1016/j.atherosclerosis.2012.08.018
24. Wang Y, Krishna S, Walker PJ, Norman P, Golledge J. Transforming growth factor-β and abdominal aortic aneurysms. Cardiovasc Pathol. 2013; 22: 126-132. doi: 10.1016/j.carpath.2012.07.005
25. Shen Y, Croft KD, Hodgson JM, et al. Quercetin and its metabolites improve vessel function by inducing eNOS activity via phosphorylation of AMPK. Biochemical Pharmacology. 2012; 84: 1036-1044. doi: 10.1016/j.bcp.2012.07.016
26. Changsiri D, Wang Y, Rajbhandari D, et al. Tryptophan metabolism to kynurenine is a potential novel contributor to hypotension in human sepsis. Critical Care Medicine. 2011; 39: 2678-2683. doi: 10.1097/CCM.0b013e31822827f2.
27. Jackman K, Brait VH, Wang Y, et al. Vascular expression, activity and function of indoleamine 2,3-dioxygenase 1 following cerebral ischaemia-reperfusion in mice. Naunyn-Schmiedebergs Archives of Pharmacology. 2011; 383: 471-481. doi: 10.1007/s00210-011-0611-4
28. Beck K, Wu BJ, Ni J, et al. Interplay between heme oxygenase-1 and the multifunctional transcription factor Yin Yang 1 in the inhibition of intimal hyperplasia. Circulation Research. 2010; 107: 1490-1497. doi: 10.1161/CIRCRESAHA.110.231985
29. Wang Y. Re: The pathophysiology of preeclampsia: current clinical concepts. Journal of Obstetrics and Gynaecology. 2010; 30: 426-427.
30. Wang Y, Liu H, Stasch JP, et al. Kynurenine is an endothelium-derived relaxing factor produced during inflammation. Nature Medicine. 2010; 16: 279-285. doi: 10.1038/nm.2092.
31. Wang Y, Wen Y, Fang Y, et al. Experimental vasoprotection by a novel erythrocyte-derived depressing factor in rats with arterial calcinosis. Vascular Pharmacology. 2009; 50: 65-70. doi: 10.1016/j.vph.2008.10.001
32. BJ Wu, Midwinter RG, Cassano KC, et al. Heme oxygenase-1 increases endothelial progenitor cells. Arteriosclerosis, Thrombosis, and Vascular Biology. 2009; 29: 1537-1542. doi: 10.1161/ATVBAHA.109.184713
33. Pang H, Wen Y, Ma N, Wang Y, Shi L. Protective role of a novel erythrocyte-derived depressing factor on blood vessels of renovascular hypertensive rats. Clinical and Experimental Pharmacology and Physiology. 2007; 34: 393-398. doi: 10.1111/j.1440-1681.2007.04561.x
34. Ma N, Wang Y, Wen Y. Protective effects of an erythrocyte-derived depressing factor on blood vessels of hypertensive diabetic rats. Basic Medical Sciences and Clinics. 2004; 24: 566-569.
35. Wang Y, Wen Y, Ma N, Shi L. Cardiac protective role of a novel erythrocyte-derived depressing factor on rats and its Ca2+ mechanism. Chinese Science Bulletin. 2003; 48: 2710-2714. doi: 10.1007/BF02901761
36. Wang Y, Wen YY, Shi L, Pang H, Ma N, Fu YY. Action mechanism of a new erythrocyte-derived depressing factor anti-vascular aging. Central South Pharmacy. 2003; 1: 71-74.
37. Pang H, Wen Y, Shi L, Ma N, Wang Y. Protective role of a novel human erythrocyte-derived depressing factor on blood vessels in rats. Chinese Science Bulletin. 2002; 47: 717-721.
38. Wang Y, Wen Y, Pang H, Shi L, Ma N. Comparison of the action of human and porcine erythrocyte-derived depressing factor. Acta Academiae Medicinae Sinicae. 2002; 24: 344-348.
39. Wang Y, Zheng H. Experimental research of Taoxingru Emulsion on injury caused by motor vehicle exhaust gas. Journal of Integrative Medicine. 2000; 9: 2338-2340.
40. Yuan JR, Rong R, Wang Y. Research on volatile oil component in szechwan lovge rhizome. Journal of Chinese Medicine. 1999; 34: 406.