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ABSTRACT

	 There	are	different	ways	in	which	human	beings	cognitively	handle	sources	of	infor-
mation.	Tasks,	 such	as	number	guessing,	velocity,	weight,	and	extension	estimation,	can	be	
accomplished	through	different	cognitive	strategies	–	e.g.	by	counting,	or	comparing	objects’	
characteristics,	and	so	on.	 In	most	cases,	 these	different	ways	 imply	different	performances	
and	costs	to	the	subject.	We	offer	an	interpretation	of	these	“different	ways”	in	terms	of	differ-
ent	channel	codes	through	which	the	environmental	information	is	processed	by	the	Central	
Nervous	System	(CNS).	By	considering	the	channel	code’s	cost	and	performance,	we	will	dis-
tinguish	among	three	categories	of	codes;	prompt	processing,	working	memory,	and	symbolic	
coding	scheme.	The	interpretation	seems	to	provide	explanations	to	important	questions,	such	
as:	Why	do	we	have	the	internal	representation	that	we	have	–	in	terms	of	colors,	extension,	
and	texture?	Why	are	simple	theories	considered	better	than	complex	ones?	Why	do	different	
representations	of	a	given	system,	even	if	conflicting,	result	in	the	same	action	plans	(experi-
ments)?

KEYWORDS: Brain	processing	limits;	Information	theory;	Number	guessing	experiment;	Sym-
bolic	language.	

INTRODUCTION

	 In	general,	there	seem	to	be	different	ways	in	which	human	beings	cognitively	handle	
sources	of	information.	Tasks,	such	as	number	guessing,	velocity,	weight,	and	extension	esti-
mation,	can	be	accomplished	through	different	cognitive	strategies	–	e.g.	by	counting,	or	com-
paring	objects’	characteristics,	and	so	on.	In	most	cases,	these	different	ways	imply	different	
performances	and	costs	to	the	subject.	In	this	paper,	I	offer	an	interpretation	of	these	“different	
ways”	 in	 terms	 of	 different	 channel	 codes	 through	which	 the	 environmental	 information	 is	
processed	by	the	Central	Nervous	System	(CNS).	By	considering	the	channel	code’s	cost	and	
performance,	I	will	distinguish	among	three	categories	of	codes;	prompt	processing,	working	
memory,	 and	 symbolic	 coding	 scheme.	The	 code	metaphor	 affords	 alluring	 explanations	 to	
important	questions,	such	as:	Why	do	we	have	the	internal	representation	that	we	have	–	in	
terms	of	colors,	extension,	and	texture?	Why	are	simple	theories	considered	better	than	com-
plex	ones?	Why	do	different	representations	of	a	given	system,	even	if	conflicting,	result	in	the	
same	action	plans	(experiments)?	In	most	cases,	examples	will	be	given	through	the	number	
guessing	experiments,	though	the	general	principles	seem	to	be	applicable	to	cognitive	tasks	
broadly.

	 From	the	philosophical	point	of	view,	the	problem	of	giving	a	suitable	characteriza-
tion	of	the	role	played	by	symbolic	language	in	our	relation	with	the	environment	has	mostly	
taken	 a	 representationalist	 format.	 Philosophers	 have	 broadly	 tried	 to	 justify	 the	 successful	
employment	of	mathematical	language	in	science	through	notions	as	‘reference’,	‘correspon-
dence’,	 ‘truth’;	all	of	which	seem	to	suppose	a	representing	 relation	between	symbolic	 lan-
guage,	on	the	one	hand,	and	the	world	(or	a	model	of	it)	endowed	of	predefined	properties,	on	
the	other	hand.	The	problem	is	that	this	representationalist	account	seems	to	provide	no	sat-
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isfactory	explanation	of	the	connection	between	the	organism’s	
representations	and	its	interactions	with	environment,	which	is	
the	main	organism’s	purpose.1-6	From	the	psychological	point	of	
view,	the	idea	of	interpreting	the	symbolic	language	as	a	code	is	
not	entirely	new.	Dehaene	in	1992,	for	example,	has	proposed	a	
model	in	which	different	numerical	representations	are	viewed	
as	different	processing	codes	for	numerical	magnitudes.7	How-
ever,	the	Dehaene’s	triple-code model provides	no	clear	indica-
tion	of	which	mathematical	tools	should	we	employ	to	make	this	
notion	of	code	more	precise.	Therefore,	the	twofold	aim	of	this	
paper	is,	first,	to	provide	a	characterization	of	the	role	played	by	
symbolic	language	in	our	relation	with	the	environment	that	can	
be	connected	with	motor	interaction.	And,	second,	to	suggest	a	
mathematical	formalist	in	which	the	code’s	intuition	can	be	suit-
able	formulated	and	explored,	conducting	to	more	refined	mod-
els.	As	a	surplus,	answers	to	old	philosophical	questions	seem	to	
emerge.

THEORETICAL FRAMEWORK

	 The	information	processing	carried	out	by	the	Central	
Nervous	System	(CNS)	is	interpreted	as	the	communication	sys-
tem	whose	performance	is	measured	in	terms	of	control.	There-
fore,	 environmental	 information	 is	 processed	 by	 the	 sensorial	
organs	 resulting	 in	 action	 plans	whose	 objectives	 are	 to	 keep	
the	organism	alive.	Whenever	an	accident	occurs	I	will	assume	
some	bit	of	information	had	been	wrongly	decoded	–	the	average	
over	the	suffered	accidents	gives	the	degree	of	control	–	or	the	
lack	of	control.	According	to	this	interpretation,	an	information	
processing	system	is	specified	by	six	entities,	grouped	into	three	
pairs:	The	source	(p(s), d),	consisting	of	a	probability	distribu-
tion	p(s)	 and	 a	 distortion	 function	d;	 the	 channel	 (p(y│x), ρ),	
consisting	of	a	conditional	probability	distribution	p(y│x)		and	a	
cost	function	ρ;	and	the	code	(F,G),,	consisting	of	the	encoder	F  
and	the	decoder	G	functions	(Figure	1).	For	the	purpose	of	this	
paper,	I	will	be	concerned	with	discrete	and	finite	alphabets.	

Definition 1.1 (Source): A discrete-time memory less source 
(p(s), d) is specified by a probability distribution p(s) on an 
alphabet S and a set of Hamming-like distortion functions. 
Let’s take the power set P(S), so that P(S)={S̿1,…,S̿i,…,S̿2|S|}. 
Now let us define a set of Hamming-like distortion functions    

U= {d1 (S, Ŝ ),…,di (S, Ŝ ),…,d2|S|(S, Ŝ )} so that
 
                                                                                               1.1.
 

is called the Accident Distortion Measure, which results in a 
probability of error, since Edi(S,Ŝ)=Pri(S≠Ŝ). This implicitly 
specifies an alphabet Ŝ in which the source is reconstructed. As 
the alphabets are discrete, we call this, a discrete memoryless 
source, and the probability distribution becomes a probability 
mass function (pmf ). 

	 Intuitively,	 the	 source	 p(s)	 should	 be	 interpreted	 as	
one’s	environment	and	the	2S	distortion	functions	as	the	relevant	
information	to	successful	interactions	in	all	different	situations.	

Definition 1.2 (Learning Function): To choose among the 2|S| dis-
tortion functions di(S,Ŝ), a set of sequences { }1 2, ,....,n n

nA s s s s∈ = ∈  
is generated according to the distribution of probability p(s), the 
so-called typical set of  S. Then we define an index function L 
so that
                                                                                                                                       
: nL A U∈ →

                                                                                                                                                                                                                                                                                                   
is called Learning Function. The learning process is a question 
of finding out the Learning Function L. The sequences in nA∈ can 
be interpreted as the typical situations occurring in our world.

	 Intuitively,	each	sequence	si

nA∈Sn	should	be	interpreted	as	
a	typical	environmental	situation	–	i.e.	the	rocks	falling	down,	
hot	air	coming	up,	birds	flying,	fishes	swimming	and	not	other-
wise	–	and	the	Learning	Function	as	the	skill	of	paying	attention	
to	the	right	things	in	every	situation.

Definition 1.3 (Channel): A discrete-time memoryless channel  
(p(y│x),ρ) is specified by a conditional probability distribution, 
p(y│x), defined on two discrete alphabets X and Y and a non-
negative function 

                          ρ:X→R+                                                                            1.3.

called the channel input cost function. When the alphabets are 
discrete, we call this a discrete memoryless channel.
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Figure 1: Information system.

1.2.
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	 Intuitively,	the	notion	of	channel	should	be	interpreted	
as	the	relation	between	perception	and	action	and	the	cost	func-
tion	as	a	measure	of	the	processing	costs.	

Definition 1.4 (Source-Channel Code): A source-channel code  
(F, G) of rate R is specified by an encoding function
                                       
   F:S→Xn,                                                           1.4.   

yielding	code	words	xn(1),xn(2),…,xn(2nR),	the	set	of	code	words	
is	called	the	codebook or coding scheme.

And a decoding function
                                  
                 G:Yn→Ŝ,                                                            1.5.           

such that k/n = R, where n is for n uses of channel and k is for 
number of bits per source symbol.

	 Intuitively,	S	is	the	source	information	that	affects	the	
organism	through	stimuli	generating	an	 internal	 representation	
Xn.	The	internal	representation	is	processed	generating	an	action	
plan	Yn,	which	is	decoded	as	real	actions	Ŝ.                                                                                               

	 For	a	fixed	source	(p(s),d),	a	fixed	channel (p(y│x),ρ), 
and	a	fixed	code	(F, G),	we	can	then	easily	determine	the	average	
incurred	distortion,

    Di
def  Edi(S

k,Ŝk)																																																																		1.6.

and	the	average	required	cost,

				Γ def Eρ(Xm)																																																																								1.7.
 
	 The	 information	 source	 S	 is	 merged	 in	 a	 codebook	
(n,2nR)		through	the	encode	function	F	and	transmitted	through	
the	channel	p(y│x)	at	a	cost	Γ.	The	channel	output	 is	decoded	
through	the	function	G	resulting	in	source	estimation	(or	repre-
sentation)	Ŝ,	resulting	in	a	distortion	D.	The	maximum	quantity	
of	 information	 transmitted	 through	the	channel,	given	the	cost	
constraint	Γ,	is	defined	in	terms	of	Mutual	Information	as	follow-
ing:

Definition 1.5 (Capacity-Cost Function): The capacity-cost func-
tion of the channel (p(y│x),ρ) is defined as

C(Γ)=maxp(x):Eρ(x)≤Γ I(X;Y)                                                      1.8.

	 The	 cost	 measure	 limits	 the	 quantity	 of	 information	
that	the	channel	can	transmit	reliably.	According	to	the	Source-
Channel	Separation	Theorem,	 if	H(S)≤C(Γ),	 then	 there	exist	a	
source-channel	code	so	that	the	probability	of	error	goes	asymp-
totically	to	zero.	Otherwise,	if	H(S)>C(Γ),	then	the	probability	
of	error	is	bounded	above	zero	–	which	means	that	the	D>0.8,9 
In	other	words,	if	the	source	entropy	is	greater	than	the	channel-
cost	capacity,	then	no	compression	can	be	carried	out	lossless.	

	 Intuitively,	 it	 means	 that	 when	 given	 interaction	 de-
mands	more	 information	 from	 the	 environment	 than	 the	CNS	
is	 able	 to	 process,	 the	 probability	 of	 an	 accident	 to	 occur	 is	
increased.	The	 function	which	gives	 the	compression	 rate,	 for	
fixed	distortion	value	D,	is	the	Rate-distortion	function.

Definition 1.6 (Rate-Distortion Function): The rate-distortion 
function of the source (p(s),d) is defined as
   

i i p(S|S):Ed (S,S) DR(D)=min I(S|S)≤
 


                                               1.9.        

	 On	the	other	hand,	the	function	which	gives	the	distor-
tion	value,	for	a	fixed	rate	R,	is	the	Distortion-rate	function.											
                                                    
Definition 1.7 (Distortion-Rate Function): The distortion-rate 
function of the source (p(s),d) is defined as
                                                            

ip(S|S):I(S,S) RD(R)=min Ed (S|S)≤
 



                                       1.10.        

	 We	are	most	interested	in	the	distortion-rate	function,	
where	the	parameter	R=C(Γ);	i.e.	given	the	channel-cost	capac-
ity,	we	are	 interested	 in	codes	which	can	reduce	the	distortion	
value	D	as	close	as	possible	to	its	limit.	The	main	objective	of	
this	paper	is	to	compare	different	coding	schemes	and	their	re-
spective	distortion	values	Di	in	order	to	measure	their	efficien-
cies.

Prompt Processing Scheme: Subitizing
 
	 Prompt	 information	 processing	 is	 represented	 by	 the	
following	 setup:	 An	 information	 source	 S	 emits	 a	 sequence	
s1,..,si,…,sm,	of		bits	of	information,	which	is	compressed	through	
a	encoding	function	F	onto	a	channel	input	sequence	x1,…, xi,…
,xn	of	 	bits	of	 information,	 for	 i∈T	 and	m>n	 .	The	m-bits	 se-
quence	 is	 the	perceptual	 information	 consisting	of	 size,	 color,	
texture,	 length,	numerousness,	and	so	on,	and	 the	n-bits	chan-
nel	input	sequence	consists	of	our	internal	representations	about	
the	outside	world.	The	clause	that	m>n	means	exactly	that	the	
coding	 function	 is	 lossy	compressing	 the	environmental	 infor-
mation	into	the	internal	representation.	The	n-bits	channel	input	
sequence	is	processed	through	the	channel	p(y|x)	generating	an	
output	sequence	y1,…,yi,…,yn,,	which	is	the	semantic	meaning	
invoked	by	the	internal	representation.	The	output	sequence	gen-
erated	by	the	channel	is	decoded	through	decoding	function	G 
in	a	motor	plan,	 ŝ1,…,ŝi,…,ŝk	 for	k≤m	 (Figure	1).	The	pair	 (F, 
G)p	is	precisely	our	ordinary	representations	which	ground	our	
intuitive	notion	of	reality.	The	channel	has	a	cost	limit	Γ	so	that	
sequences	x1,…,xi,…,xn	have	their	length	constrained	–	suppos-
ing	that	we’re	just	interested	in	cases	of	reliable	transmission.
 
	 In	 order	 to	measure	 the	 average	 of	 error	 of	 the	 code	 
(F, G)p	 some	 psychological	 experimentation	 is	 needed.	 Some	
cognitive	 experiments	 assume	 the	 following	 general	 format:	
A	perceptual	sample	is	showed	for	a	short	period	of	time	–	of-
ten	less	than	one	second	–	and	then	it’s	asked	for	the	subject	to	
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give	the	suitable	motor	answer	for	it	–	which	is	either	voicing	
something	or	pushing	a	lever	or	executing	more	elaborate	action	
plans.	An	example	is	the	guessing	experiments	in	which	a	given	
setup	is	quickly	shown	–	e.g.	a	set	of	objects	–	and	the	individual	
has	to	guess	the	exact	characteristics	of	the	setup.	Typically,	the	
experiments’	 results	present	 inconsiderable	 error	 average	 rela-
tive	 to	 sparse	 sources	of	 stimuli	–	whether	numerosity,	 exten-
sion,	or	velocity.	But,	as	the	source	information	rate	is	increased	
above	 a	 given	quantity,	 the	 average	of	 error	 starts	 to	 increase	
almost-linearly	 along	with	 the	 source	 information	 rate.	Some-
times	this	average	of	error	is	also	expressed	in	terms	of	the	We-
ber’s	Fraction,	which	is	a	constant	describing	of	the	slop	of	vari-
ance’s	growth	recta	related	to	the	increasing	of	the	quantity	of	
information1	–	as	the	variance	increases	the	error	average	does	as	
well.	The	Weber’s	Fraction,	for	numerical	processing	is	around	
12%,10	for	size-constancy	processing	it	is	around	4%,	and	for	the	
object’s	speed	and	trajectory	processing	it	is	between	5%-10%.11 
Still	other	perception’s	modalities,	such	as	color	hues,12-17	show	
the	same	trade-off	between	the	source	information	rate	and	error	
average.	

	 The	trade-off	between	the	source	information	rate	and	
the	average	of	error	can	be	appreciated	in	the	number	process-
ing	case.	In	the	number	guessing	experiment,	a	setup	containing	
a	given	number	of	entities	is	shown	for	a	short	period	of	 time	
–	often	less	than	one	second	–	and	the	subject	has	to	guess	the	
setup’s	numerosity.	The	subject’s	test	performance	gives	rise	to	
two	numerical	processing	phenomena;	subitize and	estimation. 
In	the	former	condition,	one	is	able	to	subtly	recognize	the	set’s	
numerosity	up	to	around	3	or	4	elements	while,	in	the	latter	con-
dition,	only	an	estimation	is	possible.18,19,40	As	the	term	“subitiz-
ing”	suggests,	 it	occurs	when	 the	 individual	 subtly	 recognizes	
the	set’s	numerosity	as	rapid	as	40-100ms/item,	effortless,	and	
very	 accurate	 –	 practically	 error-free.	 On	 the	 other	 hand,	 for	
setup’s	 numerosity	 greater	 than	 4	 only	 estimations	with	 some	
degree	of	uncertainty	are	possible,	which	means	that	the	average	
of	error	is	bounded	above	zero.		
 
	 Kaufman	et	al	represented	the	subjects’	number	guess-
ing	performance	through	the	trade-off	between	uncertainty	and	
the	source	information	rate	(Graphic	1).18	The	certainty	axis	is	
divided	in	6	degrees,	where	5	means	complete	certainty	and	0	
means	complete	uncertainty.	Notice,	that	at	4	or	5	objects,	there	
is	almost	complete	certainty	while	it	brusquely	decreases	after	6	
objects.	Graphic	1	shows	clearly	the	almost	linearly	increasing	
of	the	average	of	error,	after	a	given	value,	along	with	the	source	
information	rate	increasing.	Therefore,	if	few	objects	compose	
the	 setup,	 the	 visual	 representation	 achieves	 the	 right	 magni-
tude	with	high	certainty;	i.e.	Di≈0.	Otherwise,	for	large	setup’s	
numerosity,	the	average	of	error	is	bounded	above	zero,	Di>0.	
In	summary,	the	code	(F, G)p	compresses	the	m-bits	perceptual	
sequence	 in	 an	 n-bits	 channel	 input	 sequence,	which	 consists	
of	our	 internal	representations	about	 the	outside	world.	As	the	

1The	guessing	performance’s	uncertainty	can	be	conceptualized	through	differ-
ent	notions;	for	example,	either	in	terms	of	variance,	or	entropy,	or	simply	as	a	
conditional	distribution

channel-cost	capacity	limits	the	number	of	bits	reliably	transmit-
ted,	the	perceptual	sequence’s	bits	are	lossy	compressed	in	the	
channel	input	code	words.	The	compression	carried	out	by	the	
code	(F, G)p		is	a	kind	of	all-purpose	one,	for	even	in	the	situa-
tions	in	which	only	numerosity	is	interesting,	color	information,	
for	 example,	 cannot	 be	 stripped	 out	 from	 the	 representations.	
For	this	reason,	the	perceptual	sequence’s	bits	interact	with	each	
other	so	that	a	setup	with	exceeding	color	information	disrupts	
the	number	processing,	for	example.18	The	uninteresting	infor-
mation	is	called	redundancy	and	the	prompt	processing	scheme	
doesn’t	seem	to	be	a	good	code	to	handle	specific	situations.	But	
why	has	nature	endowed	us	with	such	a	code?	The	reason	seems	
to	be	that	the	(F, G)p	code	is	a	good	code,	on	average,	over	many	
different	situations.	When	the	average	distortion	D	is	calculated	
for	whole	set	U	of	Hamming-like	distortion	functions,	di(S,Ŝ),	
the	expected	value	 |S|

2
i|S| 1

1E(U)= D
2 ∑∑ 	results	in	a	tolerable	value	–	i.e.	it	

keeps	the	organism	alive	in	most	cases.

Working Memory Scheme: Biological Recoding
 
	 The	main	idea	of	the	previous	discussion	was	that	the	
prompt	coding	scheme	is	a	good	one	when	handling	a	variety	of	
situations,	but	it	is	not	an	optimal	code	when	handling	specific	
tasks	–	i.e.	it	is	a	good	source-channel	code	averaging	over	all	
Hamming-like	distortion	measures	di(S, Ŝ ),	but	it	is	a	bad	one	
for	 a	 subset	 of	 them.	 For	 specific	 situations,	where	 just	 some	
specific	bits	are	relevant,	a	different	coding	function	would	be	
better.	

	 This	 time	 I	will	examine	how	 the	working	memory’s	
role	in	cognitive	tasks	fits	into	our	previous	theoretical	model.	
The	working	memory	is	basically	a	memory	system	needed	for	
executing	complex	motor	tasks	when	the	essential	cues	are	not	
present	 in	 the	 environment	 at	 the	 time	 of	 the	 response.20 The 
system,	in	different	ways,	seems	to	help	the	performance	of	cog-
nitive	tasks.	I	will	interpret	the	working	memory	as	an	encoder	
which	employs	different	codes	(F, G)w	according	to	different	dis-
tortion	measures	di(S, Ŝ).	

	 The	 term	 ‘working	memory’	 refers	 to	 a	 brain	 system	
that	provides	temporary	storage	and	manipulation	of	the	infor-
mation	necessary	for	such	complex	cognitive	tasks	as	language	
compression,	learning,	problem	solving,	and	action	planning.21 

The	working	memory	has	two	broad	functional	characteristics;	
maintenance	and	manipulation	of	information.	According	to	the	

Graphic 1: Certainty versus numerousness.
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multicomponent	model,22,23	the	information	maintenance	is	pu-
tatively	carried	out	by	three	distinct	systems;	the	phonological	
loop,	 the	 visuospatial	 sketchpad,	 and	 the	 episodic	 buffer.	The	
first	 two	 are	modal	 subsystems,	 respectively,	 for	 auditory	 and	
visual	 information,	 while	 the	 last	 is	 a	 multimodal	 integration	
subsystem.	 Still	 each	maintenance	 system	 has	 two	 functional	
distinctions;	the	passive	storage	and	active	rehearsal	of	informa-
tion.	The	passive	storage	retains	the	information	temporarily	and	
it	is	subject	to	loss	by	decay	or	interference	over	time.	The	active	
rehearsal	of	information	tries	to	simulate	the	retained	informa-
tion	so	as	to	keep	it	in	mind	–	e.g.	rehearsal	would	correspond	
to	 the	common	strategy	of	sub	vocally	repeating	 the	sequence	
of	 digits	 to	 oneself.	The	 other	 broad	 functional	 characteristic,	
manipulation	of	information,	corresponds	to	the	central	execu-
tive,	which	is	responsible	for	recoding	the	information	in	a	new	
format	–	such	as	when	one	sub	vocally	repeats	some	sequence	
of	digits	according	to	a	specific	format.	Neurological	evidence	
suggests	that	the	anterior	regions	of	the	cortex	–	such	as	inferior	
frontal	cortex	(BA	44;	Broca’s	area)	and	premotor	cortex	(BA	
6)	–	are	responsible	for	rehearsal	and	manipulation,	while	pos-
terior	regions	of	the	cortex	are	responsible	for	storage	–	such	as	
inferior	and	superior	parietal	cortex	(BA7/40)	and	right	inferior	
parietal	cortex	(BA	40).24-28 
 
	 Even	if	 the	 temporary	storage	and	manipulation	roles	
can	help	in	cognitive	tasks	separately,	we	will	focus	on	the	cas-
es	in	which	they	seem	to	work	together	in	order	to	recode	the	
perceptual	information.20,22,23,29	The	preprocessed	information	is	
retained	in	one	of	the	storage	systems	and	then	it	is	recoded	by	
the	manipulation	system.	For	example,	for	the	case	in	which	one	
is	 interested	 in	 the	 setup’s	 numerosity,	 the	 subject	 can	 recode	
the	setup’s	numerosity	in	terms	of	“chunks”	so	as	to	surmount	
the	prompt	processing	limit.30-34	Therefore,	if	the	processing	of	
numerousness	was	limited	to	around	3	or	4	objects	(subitizing),	
then	by	using	working	memory	one	is	able	to	increase	this	num-
ber	 to	around	7,	with	very	 low	average	of	error	(Graphic	2)	–	
without	counting!	The	encoder’s	role	is	viewed	as	an	endeavor	to	
deploy	different	source-channel	codes	(F, G)w	in	order	to	reduce	
distortion	value	Di	according	to	every	specific		i –	remember	that	
the	 index	 i	 is	 given	by	 typical	 sequence	 (situation)	 occurring.	
The	new	mental	representation	(channel	input)	generated	by	the	
working	memory	is	very	poor	concerning	color,	size	or	texture	
information,	but	 it	 is	much	more	 informative	about	numerical	
information	–	it	is	a	better	code	for	handling	redundancy.

	 If	 it	 is	 plausible	 to	 interpret	 the	working	memory	 as	
an	encoder,	 then	the	information	kept	in	it	should	be	of	a	pre-
processed	kind.	Neuropsychological	evidence	offers	support	for	
the	 independence	between	 the	working	memory’s	 information	
and	the	semantic	content	currently	retrieved	through	it.	Among	
this	evidence	is	the	fact	that	similarities	in	semantic	content	cur-
rently	retrieved	through	a	set	of	stimuli	are	irrelevant	for	the	acu-
ity	with	which	these	stimuli	are	kept	in	working	memory.		For	
example,	if	one	were	given	a	list	of	words,	such	as	“map”	“tap”	
“lap”	“flat”	and	so	on,	it	would	be	difficult	to	remember	all	those	
words	because	the	stimuli	displays	similar	pattern.		On	the	other	
hand,	if	one	were	given	a	list	of	words,	such	as	“house”	“home”	
“abode”	 “apartment”	 someone	 would	 not	 have	 as	 much	 of	 a	
problem	remembering	even	if	the	semantic	content	is	about	the	
same.	This	 is	because	working	memory	functions	at	a	prepro-
cessed	level	not	taking	into	consideration	the	semantic	content.35 
Still,	the	concurrent	modal	information	tends	to	disrupt	different	
modal	information	kept	in	working	memory.	There	is	a	reduc-
tion	in	recalling	lists	of	visually	presented	items	brought	about	
by	the	presence	of	irrelevant	spoken	material.	The	spoken	mate-
rial’s	semantic	content	is	completely	irrelevant,	with	unfamiliar	
languages	or	noisy	sounds	being	just	as	disruptive	as	meaningful	
words	in	one’s	own	language.	These	results	are	interpreted	under	
the	assumption	that	disruptive	spoken	material	gains	obligatory	
access	to	working	memory.36
 
	 Even	 if	 the	working	memory	allows	 the	brain	 to	sur-
mount	its	limits	of	prompt	processing,	it	doesn’t	get	far	enough.	
This	system	appears	to	be	strikingly	limited	in	capacity,	and	can	
only	 store	 a	 small	 amount	of	 information	 for	 short	 periods	of	
time	–	it’s	around	three	items	for	not	more	than	three	seconds-
-in	the	number	processing	case.30-34	On	the	other	hand,	working	
memory’s	representation	is	still	structured	with	the	same	prompt	
processing	code’s	properties	–	i.e.	even	if	it	privileges	some	kind	
of	information,	say	numerosity,	it	cannot	preclude	the	other	kind	
of	information,	such	as	colors,	forms,	and	so	on.	For	example,	
if	 a	 dense	 colorful	 setup	 is	 presented,	 it	 causes	 the	 numerical	
capacity	of	visuospatial	sketchpad,	which	is	generally	estimated	
to	be	about	4	items,	to	decrease.30,34	These	results	generalize	the	
working	memory’s	limits	for	the	setup’s	complexity,	rather	than	
for	just	the	number	of	objects.35

The Cultural Strategy: The Employment of Symbols

	 The	working	memory,	as	previously	mentioned,	 is	an	
encoding	system	which	stores	 information	and	recodes	 it.	The	
problem	with	this	system	is	that	it	is	severely	limited	in	storage	
capacity.	Additionally,	 the	working	memory	code	is	 too	costly	
for	optimally	handling	 large	amounts	of	 information;	 its	over-
load	causes	severe	disruption	to	many	cognitive	tasks.	A	new	and	
less	costly	format	is	the	channel	code	(F, G)S,2	which	represents	
symbolic	language	as	another	coding	scheme.	The	symbolic	lan-
guage	coding	scheme	has	at	least	two	advantages	in	comparison	
with	 the	 internal	 representation	 schemes.	First,	 it	 is	 a	 cheaper	
and	more	efficient	channel	code	than	the	internal	representation	

2A	similar	interpretation,	in	terms	of	two	mental	calculation	systems,	has	been	
offered	by	Dehaene.37

Graphic 2: Certainty versus numerousness by using working memory.
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schemes	and,	second,	it	liberates	the	working	memory	to	help	in	
learning,	problem	solving,	and	planning	tasks.	By	using	a	more	
efficient	code,	much	more	information	can	be	reliably	transmit-
ted,	which	 ends	up	 improving	drastically	 the	 system’s	 control	
upon	the	environment.

Efficiency and cost: The	 three-object	 prompt	 processing	 limit	
can	 be	 interpreted	 as	 the	 channel-cost	 capacity.	 An	 efficient	
channel	code	should	achieve	the	smaller	error	rate	by	compress-
ing	the	source	information	in	code	words	that	don’t	exceed	the	
complexity	expressed	by	that	setup.	To	compare	two	codes’	ef-
ficiency	one	should	pay	attention	to	its	average	of	error	on	the	
cognitive	tasks.	By	comparing	the	internal	representation	codes’	
performance	with	the	symbolic	performance	in	numerical	tasks,	
one	can	see	the	huge	difference	in	efficiency	(Graphic	3).

 
	 The	 graphic	 is,	 to	 some	 extent,	 speculative	 because	
mathematical	 skills	based	on	 symbolic	 language	mastery	vary	
according	to	cultural	factors	such	as	training,	educational	system	
efficiency,	and	so	on.	At	 least	 two	groups	of	evidence	support	
the	interpretation	of	the	symbolic	language	as	a	channel	coding	
scheme;	(i)	the	symbolic	language	deficit	increases	the	error	rate	
in	 retrieving	 the	 right	 numerical	magnitude;	 and	 (ii)	 the	 sym-
bolic	 systems’	 evolution	 proceeds	 seems	 to	 be	 constrained	by	
brain	processing	cost-capacity.		

(i) The symbolic language deficit increases the error rate in re-
trieving the right numerical magnitude. There	 is	 a	 correlation	
between	the	bloom	of	the	mathematical	skills	and	mathematical	
language	competence.	The	burst	of	 conceptual	 and	 interactive	
mathematical	skills	with	which	to	handle	quantities	beyond	the	
subitizing’s	and	working	memory’s	numerical	capacity	 is	con-
comitant	with	the	numerical	language	acquisition.	The	ability	to	
count	and	handle	larger	numerosities	rises	in	children	around		 13

2  
years	old	just	when	numerical	linguistic	devices	start	being	mas-
tered.	On	 the	 other	 hand,	 evidence	 from	Amazonian	 Indigene	
groups	have	supported	the	thesis	that	language	is	a	condition	of	
possibility	for	exact	representation	of	numerosities	beyond	subi-
tizing	quantities.	The	group’s	individuals,	whose	language	miss-
es	 linguistic	 devices	 for	 quantities	 larger	 than	 3-or-4	 objects,	
have	 shown	only	 an	 ability	 to	 estimate	 over	 larger	 quantities.	
Neuropsychologists	have	found	that	disorders	in	number	repre-
sentation	frequently	are	accompanied	by	disorders	in	language.	
Patients	with	 brain	 damage	 in	 areas	 typically	 associated	with	

language	faculties	have	shown	a	severe	impairment	with	exact	
numerical	processing	of	larger	quantities.	These	same	patients,	
however,	still	keep	their	capacity	to	exactly	represent	quantities	
up	to	three	objects	and	to	estimate	over	larger	quantities.37

(ii) The symbolic systems’ evolution proceeds seem to be con-
strained by brain processing cost-capacity. As	human	 interac-
tion	 routines	 require	 the	 processing	 of	 larger	 quantities,	 it	 in-
creases	 the	demand	for	channel	code	bits.	Different	numerical	
notional	systems	have	different	costs,	which	eventually	obligate	
us	 to	change	from	one	numerical	notational	system	to	another	
according	 to	 the	 increase	 of	 the	 demand.	The	 complexity	 ex-
pressed	 by	 the	 around-three-objects	 representation	 can	 be	 in-
terpreted	as	standing	for	the	channel-cost	capacity	limit,	which	
doesn’t	mean	that	this	limit	is	the	around-three-objects	numeros-
ity,	as	it	contains	figurative	information	as	well.	
 
	 Probably,	 the	 first	 numerical	 notational	 system	 used	
consisted	of	bundles	of	sticks	paired	one-to-one	with	the	setup’s	
objects	(Figure	2).	It	was	the	least	efficient	numerical	notation,	
because	its	only	advantage	was	that	of	keeping	the	informational	
content	out	of	the	ever	changing	environment,	which	saves	short	
or	long-term	memory	demand.	However,	as	the	number	of	sticks	
increases	along	with	the	set	of	objects’	numerosity	the	bundle-
of-sticks	coding	scheme	meets	the	same	subitizing’s	and	work-
ing	memory’s	limits.	Therefore,	the	bundle-of-sticks	numerical	
system	is	a	costly	channel	code	to	process	quantities	larger	than	
fifteen	or	 twenty	objects.	Looking	at	 the	code’s	 redundancy	 is	
another	way	 to	 assess	 the	 code’s	 efficiency.	Notice	 that	 every	
stick	can	be	permutated	without	changing	 the	code’s	 informa-
tion,	which	means	that	the	code	uses	much	more	bits	than	neces-
sary	to	encode	a	given	amount	of	information.	

 

	 The	second,	the	naming-summation	numerical	system	
is	 a	 channel	 code	 category	 under	which,	 for	 example,	 are	 the	
Egyptian	and	Roman	number	systems,	characterized	by	the	em-
ployment	of	 naming	quantities	 and	 summation	 strategies.	The	
notational	marks	 are	 for	 numerical	magnitudes	 and	 their	 rep-
etition	means	their	summation.38	The	marks	retrieve	numerical	
facts	 stored	 in	 long-term	memory	whose	meaning	 is	provided	

Graphic 3: Certainty versus numerousness by using symbolic language.
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by	 inborn	numerical	 skills	or	constructed	by	combining	 them.		
For	 example,	 the	 Egyptian	 inscription	 of	 the	 number	 543	 is	
HHHHHTTTTUUU,	 where	 the	 symbols	 H,	 T,	 and	 U	 denote	
the	powers	100,	10,	and	1,	respectively.	Through	the	use	of	the	
naming-summation	numerical	system	the	numerical	information	
can	be	compressed	 in	 shorter	code	words	 than	 those	provided	
by	 the	bundle-of-sticks	 system	 (which	 is	 coextensive	with	 the	
subitizing’s	and	working	memory’s	limits)	–	the	Roman	numeri-
cal	system,	which	uses	subtraction	notations	as	well,	produces	
even	shorter	compressions.	However,	as	the	permutation	test	in-
dicates,	 the	representation	provided	by	 the	naming-summation	
numerical	systems	still	contains	too	much	redundancy;	e.g.	the	
code	 words	 HHHHHTTTTUUU	 and	 HHUHUHTTUHTT	 ex-
press	 the	 same	 numerical	 quantity.	 Even	 though	 the	 naming-
summation	numerical	system	permits	us	to	process	exact	quanti-
ties	in	the	hundred’s	magnitude,	it	becomes	too	costly	to	process	
numerosities	 around	 the	 thousand’s	 magnitude,	 meeting	 the	
subitizing’s	and	working	memory’s	limits.
 
	 The	 third	 example	 is	 the	 multiplicative	 numerical	
system	-	e.g.	Chinese	number	system.38	The	multiplicative	nu-
merical	system	is	also	based	on	underlying	additive	and	naming	
principles,	but	a	supplementary	multiplicative	principle	allows	
for	 suppression	of	 the	cumbersome	 repetitions	of	 the	 symbols	
belonging	 to	 the	 same	 rank.	 	Different	 symbols	 for	 each	 uni-
ty	 (u1,u2,…,u3)	 	are	 introduced.	The	Chinese	543	 is	 therefore	
written	 in	 the	 form,	 u5Hu4Tu3.	 Although	 the	 multiplicative	
system	 uses	 five	 different	 symbols	 instead	 of	 three	 needed	 in	
hieroglyphic	Egyptian,	it	makes	it	possible	to	compress	the	nu-
merical	 information	 in	 shorter	code	words.	However,	 as	 some	
permutation	is	still	permitted	–	u5Hu4Tu3	means	the	same	as	–	
u4Tu5Hu3	the	representation	provided	by	this	category	of	nota-
tion	contains	redundancy.				
 
	 The	last	numerical	system	is	 the	positional	numerical	
system	–	the	Arabic	Number	System.38	This	system	was	devel-
oped	some	time	in	the	first	half	of	the	sixth	century	A.D.	in	India,	
from	whence	it	spread	more	or	less	rapidly	to	the	whole	world	
through	 the	Arabic	people.	The	system	uses	only	10	symbols,	
the	same	former	system’s	operations,	and	the	rank	of	the	units	
abstractly	 symbolized	by	 the	 position	occupied	by	 these	 units	
in	the	code	word.	The	Arabic	numerical	system	encodes	quanti-
ties	in	the	usual	way,	as	we	know	it,	 	and	produces	very	short	
compressions	of	huge	quantities	–	e.g.	1080	,	which	is	approxi-
mately	 the	number	of	atoms	in	 the	entire	observable	universe.	
It	also	provides	us	with	powerful	algorithms	by	which	different	
quantities	and	relations	are	compressed	in	shorter	code	words	–	
equations.	These	algorithms	can	be	viewed	as	a	whole	class	of	
encoding	functions	producing	the	shortest	code	words	possible.	
As	easily	noticed,	permutation	among	the	symbols	are	not	per-
mitted	without	changing	the	encoded	information.
 
	 Although	 the	 above	 discussion	 has	 been	 restricted	 to	
the	processing	of	quantities,	the	same	interpretation	can	be	ap-
plied	to	different	dimensions	of	perceptual	information	process-
ing.	Therefore	different	areas	of	applied	mathematics	are	con-

nected	with	different	cognitive	processing	limits;	e.g.	geometry	
and	size-constancy	processing,	differential	calculus	and	object’s	
speed	 and	 trajectory	processing,	 and	 so	on.	The	 interpretation	
also	seems	to	give	an	explanation	to	the	intuition	“simple	the-
ories	 are	 the	 best	 theories”,	 for	 the	 simple	 theories’	 costs	 are	
smaller,	which	decreases	the	probability	of	error.	It’s	by	no	mere	
chance	 that	much	of	 the	mathematician’s	work	consists	of,	by	
exploring	 the	 isomorphism	among	different	 structures,	finding	
simpler	ways	in	which	to	solve	a	problem.	However,	it	doesn’t	
always	mean	that	complex	theories	can	be	compacted	into	simple	
(low	cost)	representation.	In	fact,	according	to	the	source	cod-
ing	theorem,	the	lower	bound	compression	is	the	R(D),	which	is	
R(0)=H(X).	Therefore,	as	long	as	one	looks	for	less	lossy	repre-
sentations,	the	code	words’	cost	inevitably	is	to	increase.

Representations Stand for What?

	 The	representational	interpretation	of	the	internal	expe-
rience	and	the	symbolic	language’s	role	has	dominated	the	oc-
cidental	thought	at	least	since	Plato.	The	general	idea	of	this	line	
of	thought	seems	to	be	grasped	through	the	Varela	et	al.	words:

“[…]	 that	 the	world	 is	pre-given,	 that	 its	 features	 can	 be	
specified	 prior	 to	 any	 cognitive	 activity.	 Then	 to	 explain	
the	relation	between	this	cognitive	activity	and	a	pre-given	
world,	we	hypothesize	the	existence	of	mental	representa-
tions	inside	the	cognitive	system	(whether	these	be	images,	
symbols,	 or	 sub-symbolic	 patterns	 of	 activity	 distributed	
across	a	network	does	not	matter	for	the	moment).”39

	 In	the	representational	interpretation,	the	particularities	
of	a	given	representation	–	such	as	colors,	extension,	or	commu-
tativity	–	stand	for	real	properties	from	the	outside	world	and	it	
is	the	relation	of	correspondence	or	adequacy,	with	its	reference	
to	 the	outside	world	 that	makes	one	 representation	better	 than	
another.3	On	the	other	hand,	in	the	channel	code	interpretation	
of	the	representation’s	role,	a	code’s	intrinsic	characteristics,	for	
example,	encoding	light	as	colors	or	as	wave	lengths,	has	noth-
ing	to	do	with	source	information,	all	that	matters	is	the	source’s	
and	code’s	complexity.	As	we	have	seen,	these	particular	coding	
aspects	 have	 rather	 a	 lot	 to	 do	with	 channel	 and	 its	 cost,	 and	
not	with	the	source	itself.	Speculatively,	if	the	brain-cost	capac-
ity	were	 greater	 (or	 infinity)	 than	 that	 suggested	 by	 cognitive	
experiments,	 the	 employment	 of	 symbolic	 language	would	 be	
unnecessary.			

	 What	 does	 it	mean	 to	 say	 source	 and	 code	 complex-
ity?	The	intuitive	way	to	understand	this	complexity	is	in	terms	
of	 the	degrees	of	 freedom	of	 the	 system’s	behavior	or	 the	de-
grees	of	freedom	through	which	a	system	can	affect	another	one.	
Mathematically,	 any	 system	can	be	 conceptualized	as	 a	 set	 of	
variables	and	 its	degrees	of	freedom	as	a	distribution	of	prob-
ability.	 If	 so,	 the	Shannon	Entropy,	which	 is	a	 function	of	 the	
distribution	 of	 probability,	 emerges	 as	 a	 suitable	 measure	 of	
3It	is	worth	noting	that	in	the	representational	interpretation,	the	belief	that	
simple	theories	are	better	has,	in	principal,	no	clear	explanation.
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complexity	in	terms	of	the	minimum	bits	necessary	to	describe	
unequivocally	the	system	behavior.4;	8,40,41	More	importantly,	the	
main	purpose	of	a	code	is	to	convey	the	source’s	complexity	as	
reliably	as	possible.	However,	very	different	codes	can	display	
the	same	complexity	and	their	intrinsic	characteristics	will	de-
pend	exclusively	on	the	channel’s	nature.	But	how	can	we	evalu-
ate	the	code’s	performance?	This	is	a	very	important	question.	

	 To	evaluate	the	code’s	performance,	one	has	to	measure	
the	distance	between	the	source	information	and	the	processing	
information,	which	 is	properly	 the	 source	 representation.	This	
distance	 is	measured	according	 to	a	distortion	measure	whose	
definition	depends	on	the	system’s	purpose.	As	we	have	said	be-
fore,	as	the	CNS	is	understood	as	a	control	system,	the	distortion	
measure	 has	 to	 be	 one	 that	 grasps	 this	 controlling	 dimension.	
In	our	model,	the	distortion	measure	is	a	Hamming-like	distor-

tion	 that	we	 call	Accident	 Function,	
ii

i
i

0	if	s=s	e	s	 	S 	 	s s	e	s	 	S
d (S,	S)=

1	if	s 	 	s 	S

ou

s e

 ∈ ≠ ∉ 
 
 ≠ ∈ 

 


 .	
The	accident	function	interprets,	as	an	error,	the	decoding	which	
results	 in	 accident.	Therefore,	 the	 symbol	 “=”	does	not	 repre-
sent	 “equals”	 or	 “equivalent”	 but	 represents	 successful	 action	
–	the	symbol	“≠”		is	for	unsuccessful	action.	Therefore,	if	two	
coding	schemes	result	in	the	same	source	representation	(action	
plans),	 they	 will	 be	 equivalent	 for	 communication	 purposes.	
The	perspective	seems	to	be	in	agreement	with	one	of	the	older	
philosophical	insights;	that	we	cannot	compare	the	reality	with	
subjective	or	symbolic	representation.	However,	all	the	time,	we	
compare	and	test	the	motor	plans	and	empirical	experiments	re-
sulting	from	these	coding	schemes.	When	a	given	code	directs	us	
to	a	successful	motor	plan,	we	say	that	“it	represents	the	reality”.	
Putting	these	two	ideas	together	we	get	to	the	following	state-
ment:	Our	epistemology	(coding	schemes)	can	be	diverse,	but	
our	ontology	(successful	interaction)	is	unique.

CONCLUSION

	 I	have	been	discussing,	broadly,	different	paths	 taken	
by	 an	 organism	 to	 better	 perform	 cognitive	 tasks.	 In	 this	 in-
terpretation,	 these	 “paths”	 are	 understood	 as	 different	 coding	
schemes	 through	which	 information	 is	 processed	 by	 the	Cen-
tral	Nervous	System.	Two	main	aspects	concerning	the	coding	
schemes’	performance	were	pointed	out.		These	are	the	coding	
scheme’s	cost	and	its	ability	to	handle	with	redundancy.	We	dis-
tinguished	among	three	coding	schemes	to	which	the	organism	
resorts:	the	prompt	processing,	working	memory,	and	the	sym-
bolic	coding	scheme.	The	prompt	processing	scheme	seems	to	
be	the	better	code	on	average;	however,	a	bad	one	for	specific	
tasks.	The	working	memory	coding	scheme	seems	to	be	better	
than	the	former	one,	but	still	too	costly	to	perform	specific	tasks	
optimally.	The	symbolic	scheme	seems	to	be	the	cheapest	and	
the	more	dynamic	one	for	handling	redundant	information.	The	
coding	scheme	metaphor	serves	to	explain	the	old	philosophical	
insight	that	simple	theories	are	better	theories	and	to	mark	a	divi-
sion	between	the	epistemological	domains	as	diverse	versus	the	
4Shannon	 Entropy	 is	 not	 the	 only	measure	 of	 complexity.	 The	 Kolmogorov-
Chaitin	complexity	is	also	a	measure	of	complexity	and	both	measures	are	math-
ematically	related.3,16,29

ontological	domain	as	unique.	
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