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INTRODUCTION                  

Inflammation is part of  the biological response of  body tissues 
and defense mechanism to harmful stimuli. The immune sys-

tem recognizes damaged cells, irritants, and pathogens, and the 
body is attempted to remove harmful stimuli and begin the healing 
process.1 During the development, the environmental disruptors 
create prolonged inflammation status, and increase the risk of  ge-
nomic instability and the introduction of  novel mutations. Sev-
eral signaling pathways involved in the regulation of  inflammatory 
response have been described under the control of  epigenetics. 
Therefore, inflammation is well recognized as a hallmark feature 
linked to the development of  many diseases including varied types 
of  tumors.2-10 Inflammatory cells and cytokines in the local tissue 
microenvironment promote a pro-inflammatory milieu, which can 
act in an autocrine and/or paracrine manner on the infiltrating im-
mune cells and modified malignant cells. Thus the composition 
of  the inflammatory microenvironment has a pivotal influence on 
risk of  disease development and progression.2 In the case of  tu-
mors, inflammation switches to immunosuppression due to tumor 
evasion from anti-tumor immune response. A promising approach 

for reversing the tumor immune evasion phenotype is epigenetic 
therapy, which exhibit efficacy in patients with refractory advanced 
non-small cell lung cancer. In this study, the epigenetic therapy was 
able to increases the numbers of  activated immune cells in a mouse 
model of  ovarian cancer.11 The goal of  this systematic review is 
to summarize the available information on the therapeutic effect 
of  epigenetic agents, which are able to reverse pro-inflammatory 
phenotype of  diseases.

DEVELOPMENTAL ENVIRONMENTAL FACTORS INDUCE 
INFLAMMATION RESPONSE            

Inflammation plays an important role in the initiation and devel-
opment of  much type of  diseases including cardiovascular dis-
ease, diabetes, mental health dysfunction, and certain types of  
cancer.12,13 Several perinatal environmental factors including nu-
trition, stress, air pollution, antibiotics can cause and increase the 
risk of  adult diseases via inflammation (Figure 1). An association 
between early life inflammation and later life diseases has been 
reported in many literatures.14-18 Epidemiological studies have 
highlighted the link between perinatal factors (such as breastfeed-
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ing, cesarean delivery, and antibiotic use) and an increased risk 
for inflammatory bowel disease and/or celiac disease.19 Perinatal 
environment determines susceptibility to intestinal inflammatory 
disorders. Although the mechanisms underlying joint effects re-
main unclear, one hypothesis is that toxic social and environmen-
tal exposures have synergistic effects on inflammatory processes 
that underlie the development of  chronic disease.20 During ma-
ternal obesity along with increased inflammatory markers in the 
maternal circulation, increased placental production of  pro-in-
flammatory mediators can be found, suggesting that the resulting 
inflammatory milieu where the fetus develops may have critical 
consequences for later diseases such as obesity.21 The association 
between prenatal undernutrition and later-life metabolic disor-
ders has been well established in multiple animal studies.22,23 For 
instance, placentas from protein-restricted rats exhibit a marked 
reduction of  11-β-hydroxysteroid dehydrogenase 2 enzyme 
(11-β-HSD2), which leads to fetal exposure to abnormally high 
glucocorticoid levels during gestation and later hypertension in 
the adult offspring.23 During this process, pro-inflammatory cyto-
kines can cause decreased activity of  11-β-HSD2, and thus may 
play a role in programming by maternal diet.24 Similarly, prenatal 
cytokine exposure is sufficient to induce obesity later in life.24,25

PRO-INFLAMMATORY PHENOTYPE AND EPIGENETIC 
REGULATION

Epigenetics refers to changes in phenotype mediated by altered 
gene expression. These changes do not occur as a result of  the 
alteration in DNA sequencing.26 DNA methylation and histone 
modification are the two major epigenetic mechanisms, which 
collaborate to package genes in euchromatinor heterochroma-
tin, a packaging that determines whether a gene is activated or 
silenced. DNA methylation refers to the covalent addition of  a 
methyl group to a cytosine residue in a CpG dinucleotide. His-
tone modification is a covalent post-translational modification 
(PTM) to histone proteins, which includes methylation, acetyla-
tion, phosphorylation, ubiquitylation, and sumoylation. The his-
tones with varied PTMs can impact gene expression pattern by 
changing chromatin structure or recruiting histone modifiers. Hy-
permethylation of  promoter CpG islands is linked with repressive 
transcriptional activity because of  loss of  affinity for transcrip-
tional factors and accessibility by the transcriptional machinery. 
The crosstalk between DNA methylation and histone modifica-
tion has also been discovered. The heterochromatin has increased 
affinity for methylated DNA-binding proteins (MBPs), which fur-
ther recruit other transcriptional corepressors including histone 
deacetyltransferases (HDACs), DNA methylases (DNMTs,), etc. 
Hypermethylation of  promoter regions is associated with repres-
sive histone marks, while unmethylated promoters are associated 
with active histone marks. Under latter circumstance, the gene 
expression is activated, since affinity for MBPs is reduced, and 
enrichment for activate histone marks is increased.

	 An increased body of  evidence shows that a variety of  
pro-inflammatory mediators is regulated via epigenetic mecha-
nism, which contributes to pathogenesis of  diseases.27-33 A recent 
study by Li et al demonstrates that epigenetic regulation of  ke

ratinocytes can contribute to chronic skin inflammation.34 Actin 
polymerizing molecule N-WASP is capable of  modulating inter-
leukin IL-23 expression in keratinocytes by regulating the degra-
dation of  the histone methyltransferases G9a and GLP, as well as 
H3K9 dimethylation level of  the IL-23 promoter. This mecha-
nism mediates the induction of  IL-23 by tumor necrosis factor 
(TNF-α), a known inducer of  IL-23 in psoriasis.34

	 During a plastic interval of  the prenatal and neonatal 
segments of  life, a stable reprogramming of  gene expression can 
occur and may predispose the individuals to adult disease.35-37 At 
a molecular level, epigenetic processes including DNA methyla-
tion and histone modifications constitute a major mechanism 
by which environmental factors may establish a new phenotypic 
trait during this plastic interval.38 A recent study demonstrates 
that preterm infant outcomes are associated with modulation of  
host immune and inflammatory responses, which are impaired by 
acute intrauterine and microbiota factors. The latter one plays a 
pivotal role in maturation of  the immune system and in the pre-
vention or development of  diseases occurring during lifetime.39,40 
Concomitantly, prenatal inflammatory exposure results in hyper-
methylation of  promoter regions for TLR-signaling pathways, 
which play a role in the innate immune response.35

	 Several clinical studies have shown that epigenetics may 
be involved in the pathogenesis of  chronic inflammatory diseases. 
In the intestinal mucosa of  celiac disease patients, DNA methyla-
tion play a role in regulating the NF-kB pathway, associated with 
dysregulation of  the inflammatory response.19 Activation of  NF-
kB has been shown to elevate the expression of  genes encoding 
for cytokines, chemokines, and other pro-inflammatory media-
tors such as IL-6, IL-8.20,41 In addition, early-life stress has been 
associated with modification of  hypothalamic-pituitary-adrenal 

Figure 1.  Early Life Exposure to a Variety of Insults Increases the Risk and De-
velopment of Diseases in Later Life via Inflammatory Pathway by Reprogram-
ming the Epigenome. Epigenetic Modifiers Targeting Inflammatory Pathways 
are Capable of Inhibiting the Pro-inflammatory Phenotype, Therefore Leading to 
Suppressing/Preventing the Development of Diseases.
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(HPA) axis- and neuroplasticity-related methylations. Changes in 
DNA methylation status of  glucocorticoid receptor (GR) gene, a 
key regulator of  inflammatory activity and others, was observed 
in response to early life stress.42

	 In addition to DNA methylation, histone modification 
has been reported to be associated with regulation of  pro-inflam-
matory phenotype and adult disease due to early life insults. For 
example, an animal study demonstrates that the promoter of  gene 
(GR/NR3C1) that encodes the GR, which play an important role 
in creating a pro-inflammatory environment, exhibits differential 
levels of  histone acetylation as well as DNA methylation in the 
hippocampus of  offspring of  high versus low licking and groom-
ing (LG) and arched-back nursing (ABN) mothers. Importantly, 
central infusion of  the HDAC inhibitor (TSA) is capable of  el-
evating H3K9 acetylation and hypermethylation of  GR promoter 
with increased NGF1-A binding, GR expression as well as HPA 
response to stress in the offspring of  the low-LG-ABN moth-
ers.42

 
PRO-INFLAMMATORY PHENOTYPE OF UTERINE FIBROIDS

Uterine fibroids (UFs) are hormonally-regulated benign smooth 
muscle myometrial tumors that severely affect female repro-
ductive health, although their unknown etiology limits effective 
care.43,44 An increasing body of  evidence supports the hypothesis 
that UFs originate from stem cells in the myometrium, although 
the specific cell of  origin for these tumors has remained elusive.45 
Myometrial stem/progenitor cells (MMSCs) and UF stem/pro-
genitor cells (UFSCs) have been identified.46-49 MMSCs are a sub-
set of  cells residing in the uterine myometrium, that remain their 
capacity to self-renew through asymmetric division rates as well 
as producing differentiated cells, which play an important role in 
tissue regeneration. UFSCs represent a subgroup of  cells with a 
tumor cell population, which also retain the ability to reconstitute 
tumors.50 Notably, the difference between MMSCs and UFSCs 
at DNA level is that MED12 mutations were found only in UF-
SCs, but not MMSCs.46 In addition, the defect of  DNA repair re-
sponse was recently observed in UFSCs.51 In UFs, a recent study 
shows that higher numbers of  macrophages are present inside 
and close to UFs as compared to the more distant myometrium.52 
Notably, several key pro-inflammatory mediators including IL-
11, IL-13 and TGF-β are overexpressed in UFs. The latter one 
in particular is a potent chemoattractant factor for macrophages. 
Another group has reported that many pro-inflammatory media-
tors that trigger or enhance specific aspects of  inflammation are 
upregulated in UF tumors as compared to adjacent myometrium 
tissues.50 In addition, the levels of  tumor necrosis factor TNF-α, 
a cell-signaling protein involved in systemic inflammation, is el-
evated in Caucasian women with clinically symptomatic UFs.53 A 
recent study also shows that UF progenitor cells secrete higher 
levels of  Th2 pathway cytokines (IL4, IL-5, IL-10, and IL-13), 
and significantly lower levels of  Th1/Th17 cytokines (IL-6, IL-
12, IL-17A, INF-γ, G-CSF, and TGF-β1), suggesting that the al-
tered pattern of  cytokine expression and secretion may enhance 
UF development via chronic inflammation with the involvement 
of  infiltrating immune cells.54

	 The link between UF development and early life expo-
sure to xenoestrogen via inflammation has been recently iden-
tified in Eker rat animal model.55 The adult Eker rats develop-
mentally exposed to diethylstilbestrol (DES) exhibits significantly 
higher expression of  pro-inflammatory markers (TNF-α, NF-
kB and IL1β) in myometrium. Concomitantly, the macrophage 
number is also significantly increased in DES-exposed myome-
trium in adult stage. Flow cytometry analysis demonstrates that 
the production of  several inflammatory cytokines is increased in 
DES-MMSCs verse vehicle exposed (VEH)-MMSCs. By RNA- se-
quencing analysis, some of  key pro-inflammatory genes including 
Pcdh7, Pdpn, Cxcl10, Cd40, Ptger2, and Ereg, exhibits upregula-
tion in MMSCs from myometrium early-life exposed to (DES) 
verse control (VEH). Subsequently, gene set enrichment analysis 
on the ChIP-sequencing data demonstrates that an enrichment 
of  H3K4me3 (an active mark for gene transcription) at the pro-
moters of  inflammation responsive genes (IRGs) is observed in 
DES-MSCs as compared to VEH-MMSCs. Furthermore, the in-
creased expression of  IRGs in DES-MMSCs is positively cor-
related with the elevated H3K4me3 epigenetic mark. In addition, 
the mRNA expression of  reprogrammed key cytokine genes en-
coding CCL-2, CCL-7, CSF-1, which contribute to the recruit-
ment of  monocytes/macrophage, exhibits a significant upregula-
tion in DES-MMSCs verse VEH-MMSCs. These studies suggest 
that developmental exposure to xenoestrogens such as DES alters 
the inflammatory microenvironment in the myometrium and in-
creases the risk of  adult onset of  UFs by permanently reprogram-
ming pro-inflammatory genes in MMSCs towards a pro-fibroid 
epigenomic landscape.55

PRECLINICAL STUDIES OF EPIGENETIC AGENTS 

Epigenetic modifiers/agents targeting DNMTs and histone mod-
ified enzymes have been widely investigated in preclinical studies 
of  many diseases. Moreover, a variety of  studies demonstrate that 
these epigenetic modifiers suppress and ameliorate varied dis-
eases including immunopathogenesis, tissue damage, pain, bone 
and cartilage destruction, and cancers, etc. via inflammation32,56-61 

(Table 1).

	 The zinc-dependent mammalian histone deacetylase 
(HDAC) family comprises over 10 enzymes, which have specific 
and critical functions in development and tissue homeostasis. In-
creased evidence points to a link between misregulated HDAC 
activity and many oncologic and non-oncologic diseases. Thus, 
the development and usage of  HDAC inhibitors provide a prom-
ising option for therapeutic treatment. Currently, the effect of  
HDAC inhibitors on suppression of  diseases via anti-inflamma-
tory pathway has been widely investigated both in vitro and in vivo. 
As shown in table 1, most of  the epigenetic modifiers targets 
inflammatory pathway by inhibition of  HDAC activity, therefore 
leading to suppression of  diseases via inflammatory pathway. 
HDAC inhibitors effect that contributes largely to their therapeu-
tic benefits, is achieved through histone deacetylation, chromatin 
remodeling and transcriptional reprogramming, as well as other 
unknown or not fully characterized mechanisms.

Systematic Review | Volume 4 | Number 1| 15

http://dx.doi.org/10.17140/CSMMOJ-4-125


Cancer Stud Mol Med Open J. 2018; 4(1): 13-23. doi: 10.17140/CSMMOJ-4-125

Yang Q, et al

Table 1. The Anti-Inflammatory Effect of Epigenetic Agents

Epigenetic-based 
Agents Family Target Diseases Model Effect

Route
/Concentration Reference

Dihydrocaffeic acid 
(DHCA) 

-Malvidin-3’-O-gluco-
side (Mal-gluc)

Phytochemicals 

Plasma pro-
inflammatory 
interleukin 6 
(IL-6) level

Chronic stress/
depression

Mouse model of sys-
temic inflammation

DHCA inhibited DNA methylation 
at the CpG-rich IL-6 sequences 

introns 1 and 3.
-Mal-gluc increased histone acety-
lation of the regulatory sequences 

of the Rac1 gene.

Orally
-Mal-gluc (0.5μg/kg/

day)
-DHCA (5 mg/kg/day)

for 24 days

82

JIB-04
Pan-selective 

KDM inhibitor
Human macro-

phages
Atherosclerosis RAW264.7 cells

JIB-04 induced apoptosis of 
macrophages in a dose-dependent 

manner.

1 μM JIB-04 for 24 
hours

83

CBP30

Selective 
inhibitor of the 
bromodomains 
of CBP (CREB 

binding protein)/
p300

Human Th17 
cells

Human type-
17–mediated 
diseases such 
as ankylosing 
spondylitis 

and psoriatic 
arthritis

Th17 cells from 
healthy donors and 
patients with anky-

losing spondylitis and 
psoriatic arthritis

CBP30 reduced secretion of IL-
17A and other pro-inflammatory 

cytokines.

2 µM CBP30 for 24 
hours

84

GSK151
-JQ1

Bromodomainex-
traterminal (BET) 

inhibitors
Th17 cells

Intraocular 
inflammatory 
disease: Poste-

rior uveitis

Mouse model 
of Experimental 

autoimmune uveitis 
(EAU)

Both abrogated the uveitogenic 
capacity of Th17 cells to transfer 

EAU.

oral gavage for 5 days 
20 mg/kg

72

GSK151
-JQ1

Bromodomainex-
traterminal (BET) 

inhibitors

Human Th17 
cells

Intraocular 
inflammatory 
disease: Poste-

rior uveitis

Human CD4+ 
T- cells

Both significantly downregulated 
Th17-associated genes IL-17A, 
IL-22, and retinoic acid–related 

orphan receptor γt.

JQ1 (30, 300 nM) or 
GSK151 (30, 300 nM) 

for 5 days

72

MS402
BD1-selective 
BET bromodo-
main inhibitor

Mouse naive 
CD4+ T cells

Inflammatory 
bowel diseases

Mouse model
MS402 blocked Th17 maturation
 and ameliorates T-cell transfer-

induced colitis.

10 mg/kg twice a 
week starting either 
at week 0, or week 
5 for 7 or 3 weeks, 

respectively

73

Trichostatin A (TSA)
Histone deacety-

lase (HDAC) 
inhibitor

T-cells
Systemic lupus 
erythematosus 

(SLE)

Cultured Human 
peripheral blood 

mononuclear cells 

TSA Downregulated CD40L and 
IL-10.

-TSA reversed the skewed expres-
sion of multiple genes implicated 

in the immunopathogenesis of SLE.

0-1000 ng/ml for 18 
hours

59

Trichostatin A (TSA) HDAC inhibitor macrophages
Acute lung 
injury (ALI)

Lipopolysaccharide 
(LPS)-induced mouse 

of ALI

TSA caused substantial attenuation 
of adverse lung histopathological 
changes and inflammationdue to 

substantial macrophage phenotypic 
changes.

1 μg/g body weight 
for 2 weeks

85

Trichostatin A (TSA) HDAC inhibitor

peripheral 
blood mono-
nuclear cells 

(PBMC)

pathogenic 
microorganisms 
induced inflam-

mation

LPS-stimulated 
from PBMC healthy 

broilers

TSA down-regulated mRNA ex-
pression of IL-1 β, IL-6 and tumor 

necrosis factor alpha (TNF-α).
5 μM for 4 hours 86

Trichostatin A (TSA)
-Nicotinamide (NIC)

HDAC inhibitors Macrophages
Rheumatoid 

arthritis 

Macrophages derived 
from the inflamed 
joints of patients 

with RA

Both Blocked the production of 
IL-6 and TNF-alpha by macro-

phages.

TSA (2 μM)
 NIC (20 mM)

for 4 hours

87

ITF2357
(Givinostat)

HDAC inhibitor
Streptococcus 
pyogenes cell 
wall arthritis

Acute arthritis

Injection of 25 μg 
SCW fragments into 
the right knee joint 

of C57/Bl6 mice

ITF2357 reduced the production 
of pro-inflammatory cytokines by 

synovial tissue.

Oral administration 
of 1 and 10 mg/kg 

ITF2357 at 2 hours, 6 
hours, day 1 and day 2

88

ITF2357
(Givinostat) 

HDAC inhibitor PBMCs
Concanavalin-

A-induced 
hepatitis

Mouse model

ITF2357 significantly reduced liver 
damage.

-ITF2357 reduced LPS-induced 
serum TNF-alpha and interferon 

gamma (IFN-γ) by more than 50%.

Oral 1 or 5 mg/kg 
one time

89

Suberoylanilide-
hydroxamic acid 

(SAHA) 
(Vorinostat)

HDAC inhibitor
Mouse macro-

phages
Inflammatory 

diseases

-In vivo animal model

-In vitro.

- Both reduced the production of 
pro-inflammatory cytokines TNF-
alpha, IL-1-beta, IL-6, and IFN-γ.

-50 mg/kg single oral 
or IV administration 

of SAHA to mice
-200 nM for 1 hour

90

MI192
HDAC3 selective 

inhibitor
PBMCs

Rheumatoid 
arthritis(RA)

RA patients by 
spectrophotometric 
assay, prior to and 
after 12 weeks of 

Etanercept therapy.

MI192 inhibited TNF production 
at high concentrations and dose-
dependently inhibited IL-6 in RA.

Dose range of 10 
μM-5 nM for 18 

hours.

91

Cont...
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Valproic acid (VPA)  HDAC inhibitor
regulatory T 
cell (Tregs)

Rheumatoid 
arthritis.

Collagen-induced ar-
thritis (CIA) mouse 

model

VPA treatment increased both the 
suppressive function of CD4(+), 

CD25(+)Tregs and the numbers of 
CD25(+),FOXP3(+)Tregs in vivo.

400 mg/kg daily start-
ing on day 21 of the 

study till day 60

92

Curcumin

Naturalpolyphe-
nol extracted 
from turmeric, 

pan-HDAC 
inhibitor

Hepatocellular 
carcinoma cell 

line

Hepatocellular 
carcinoma 

Cancer stem cells 
(CSCs)

Curcumin had CSC-depleting 
activity attributed to a NF-κB-

mediated HDAC inhibition.
25 μM for 3 days 93

Curcumin
HDAC and p300/

CBP-specific 
inhibitor

Human lym-
phoma cell line 

(Raji) 
Lymphoma

Human cancer cell 
line

Curcumin prevented degradation 
of I-kappaB alpha and inhibits 
nuclear translocation of the 

NF-kappaB/p65 subunit, as well as 
expression of Notch 1, induced by 

tumor necrosis factor-alpha.

12.5 µmol/L for 24 
hours

94

Curcumin

Natural polyphe-
nol extracted 
from turmeric, 

pan-HDAC 
inhibitor

covalently 
closed cir-
cular DNA 
(cccDNA)

Hepatitis B 
virus infection

HepG2.2.15 cell line

Curcumin inhibited HBV gene 
replication via down-regulation of 
cccDNA-bound histone acetyla-

tion.

20 μmol/L for 2 days 95

-Minocycline

-Garcinol

Histone acetyla-
tion (HAT) inhibi-

tor

cultured retinal 
Müller glia

Diabetic reti-
nopathy

Diabetic rats

- Both inhibited early diabetic reti-
nopathy via decreased expression 

of inflammatory proteins.
-Both significantly inhibited the 
acetylation and induction of the 

inflammatory proteins in elevated 
glucose levels.

-10 mg/kg, i.p. injec-
tion, 5× per week for 

10 weeks
- 20 μm Garcinol for 
24 hours, 20 nM Mi-
nocycline for 4 days

96

-Theophylline 
-Resveratrol

Activators of his-
tone deacetylase

cultured retinal 
Müller glia

Diabetic reti-
nopathy

Diabetic rats

Both significantly inhibited the 
acetylation and induction of the 

inflammatory proteins in elevated 
glucose levels.

-10 μm for 4 days.
-50 μm for 24 hours

96

-MS-275 (Entinostat)
-MGCD0103 (Mo-

cetinostat)

class I HDAC 
inhibitors 

persistent 
spontaneous 
nociception 

(PSN)

Peripheral 
inflammatory 

pain

rats inflamed by sub-
cutaneous injection 
of bee venom (BV)

Both prevented peripheral inflam-
matory pain.

Intrathecal single dose 
of 60 nmol/20 μL

60

-Indole-3-carbinol 
(I3C)

-3,3’-diindolylmeth-
ane (DIM)

Natural indoles-
found in crucifer-
ous vegetables, 
inhibitors of 
HDAC class I 

Vβ8(+) T cells

Staphylococcal 
enterotoxin B 
(SEB)induced 
inflammation

In vivo animal model
Both significantly decreased 

SEB-induced T cell activation and 
cytokine production.

40 mg/kg, i.p. every 
other day for up to 

5 days

97

Depsipeptide 
(FK228)

HDAC inhibitor Synovial tissues
Rheumatoid 

arthritis

Animal model of 
autoantibody-medi-

ated arthritis 

-FK228 inhibited joint swell-
ing, synovial inflammation, and 
subsequent bone and cartilage 
destruction in mice with AMA.
- FK228 decreased the levels of 
tumor necrosis factor alpha and 

interleukin-1beta.

2.5 mg/kg single 
intravenous dose on 

day 4

98

MS-275 HDAC inhibitor

-Prostate tissue

Macrophages

Chronic pros-
tatitis

-Experimental 
autoimmune prosta-

titisrats

-Macrophage cell line

- MS-275 reduced the local ac-
cumulation of immune cells and 
mRNA levels of representative 
pro-inflammatory molecules.

- MS-275 switched macrophages 
from classic M1 to anti-inflamma-

tory M2 phenotype

5 mg/kg, i.p. daily from 
day 0 to day 14

99

Panobinostat
(LBH589)

HDAC inhibitor PBMCs
HIV-associated 
inflammation

HIV-infected adults

- LBH589 reduced multiple 
established plasma markers of 
inflammation as high-sensitivity 

C-reactive protein, matrix metal-
loproteinase 9, soluble CD40 

ligand and IL-6.
- LBH589 reduced the propor-
tions of intermediate mono-

cytes and tissue factor-positive 
monocytes.

20  mg three times 
per week, every other 

week, for 8 weeks

100

Sulforaphane (SFN) HDAC inhibitor
Monocyte-de-
rived dendritic 

cells

Systemic inflam-
mation

Porcine cells

-SFN regulated the TLR4-induced 
activity of transcription factor 

NF-κB and TBP
-SFN suppressed the IRF6 and 

TGF-ß1 production
-SFN impaired the pro-inflamma-
tory cytokine TNF-α and IL-1ß 
secretion into the cell culture 

supernatants.

10 μM for 24 hours 101

Cont...

Systematic Review | Volume 4 | Number 1| 17

http://dx.doi.org/10.17140/CSMMOJ-4-125


Cancer Stud Mol Med Open J. 2018; 4(1): 13-23. doi: 10.17140/CSMMOJ-4-125

Yang Q, et al

Sirtinol
class III HDAC 

inhibitor
Endothelial 

cells
skin inflamma-

tion

human dermal 
microvascular endo-

thelial cells

Sirtinol significantly reduced 
membrane expression of adhesion 

molecules in TNFα- or IL-1β-
stimulated cells.

10 µM for 18 hours 102

5-Aza 2-deoxycyti-
dine (Aza)

DNA methyl 
transferase 

(DNMT) inhibi-
tor

Macrophages
Acute lung 
injury (ALI)

LPS-induced mouse 
of ALI

Aza caused substantial attenuation 
of adverse lung histopathological 
changes and inflammationdue to 

substantial macrophage phenotypic 
changes.

1 μg/g body weight 
for 2 weeks

85

Cambinol HDAC inhibitor macrophages
Inflammatory 

diseases
Bone marrow de-
rived macrophage

Cambinol inhibited the expression 
of cytokines (TNF, IL-1β, IL-6, IL-

12p40, and IFN-γ).

12.5, 50 µM for 1 
hour

103

NW-21
Novel HDAC 

inhibitor 
Human mono-

cytes
Rheumatoid 

arthritis
In vitro 

NW-21significantly reduced 
mRNA expression of mono-

cyte chemotactic protein 1 and 
macrophage inflammatory protein 

1α in monocytes stimulated by 
lipopolysaccharide or TNF-α.

20 nM for 24 hours 104

NW-21
Novel HDAC 

inhibitor 
Radiocarpal 

joint
Rheumatoid 

arthritis

collagen antibody-
induced arthritis 

animal model

NW-21reduced inflammation and 
bone loss in the arthritis modelus-

ing paw inflammation scoring, 
histology and live animal micro-CT.

daily oral administra-
tion at 5 mg/kg/day till 

end of study

104

MS-275
Benzamide 

HDAC inhibitor
Macrophage

Alzheimer dis-
ease associated 
neuroinflam-

mation

Immortalized murine 
macrophage cell line

MS-275 attenuated inflammatory 
activation of a mouse macrophage.

20 ng/mL for 24 
hours

105

MS-275 HDAC inhibitor
Sciatic nerves 
and inguinal 
lymph nodes

Human 
inflammatory 
demyelinating 
polyradiculo-
neuropathies

Experimental 
autoimmune neuritis 

mice

- MS-275 reduced the severity and 
duration of EAN and attenuated 

local accumulation of macro-
phages, T cells and B cells.

- MS-275 reduced mRNA levels 
of pro-inflammatory interleukin-

1beta, interferon-gamma and 
interleukine-17.

- MS-275 increased expression of 
anti-inflammatory cytokine inter-
leukine-10 and anti-inflammatory 
M2 macrophages in sciatic nerves.

3.5 mg/kg, i.p. once a 
day from day 10 to 

day 14

106

Tubastatin
HDAC6 selective 

inhibitor
macrophages

Rheumatoid 
Arthritis

THP1 cells

Freund’s complete 
adjuvant (FCA) in-

duced animal model 
of inflammation

-Tubastatin inhibited TNF-α and 
IL-6 in LPS stimulated human THP-

1 macrophages.

-Tubastatin significantly inhibited 
of IL-6 in paw tissues of arthritic 

mice.

272 nM and 712 nM 
for 24 hours

30 mg/kg i.p. for 5 
days

107

	 The Bromodomain and Extra-Terminal Domain (BET) 
family proteins play a crucial role in regulating gene transcription 
through epigenetic interactions between bromodomains and acet-
ylated histones during cellular proliferation and differentiation 
processes.62 Bromodomains that can specifically bind acetylated 
lysine residues in histones serve as chromatin-targeting mod-
ules that decipher the histone acetylation code. BET inhibitors 
that are capable of  targeting BET bromodomains and exhibiting 
therapeutic effects have been described.63-70 Notably, emerging 
evidence suggests that BET proteins are involved in pathogen-
esis of  inflammatory diseases62 and BET inhibitors exhibit potent 
anti-inflammatory effectsin several types of  diseases. In the brain 
of  the Alzheimer’s disease animal model, the BET inhibitor JQ1 
decreases neuroinflammation with a reduction in the expression 
of  the pro-inflammatory modulators IL-1b, IL-6, TNF-α, CCL-
2, NOS-2 and PTGS-2 in the brain of  mice.71 In addition, BET 
inhibitors are capable of  inhibiting retinal inflammatory disease 
and inflammatory bowel diseases.72,73

	 In addition to targeting HDACs and BET proteins, the 
inhibitors of  DNMTs have been widely used in many pre-clinical 
studies for a variety of  diseases, as well as in some clinical ap-
plication.74-79 The approved anti-DNMTdrugs 5-azacitidine (5AC) 
and 5-aza-2’-deoxyazacytidine (DAC) are in clinical use for the 
treatment of  myelodysplastic syndrome of  all types and chronic 
myelomonocytic leukemia.80 The inflammation related studies in 
animal model of  lung injury demonstrate that inhibition of  DN-
MTs activity, at least in part, augments regulatory T-cells (Tregs) 
number and function to accelerate repair of  experimental lung 
injury. Mice that received DAC exhibited accelerated resolution 
of  their lung inflammation.81

FUTURE DIRECTIONS AND CONCLUSION 

Tumor initiation and disease development via inflammatory path-
way are linked with early life exposure to a variety of  adverse in-
sults via epigenetic reprogramming, which play an important role 
in alteration of  pro-inflammatory profiling and phenotype. Much 
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more attention is needed to identify epigenetic agents, which ex-
hibit potent anti-inflammatory effect with minimum of  side ef-
fects. In addition, more studies are needed to evaluate the role of  
epigenetic-based drugs alone or in combination with other chem-
ical agents in suppressing inflammation as a means of  prevention 
and management of  many diseases including UFs.
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