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INTRODUCTION 

The cell cycle regulation and tumor suppressor p27 encoded by 
CDKN1B plays a key role in many cellular events.1-3 p27 is a 

member of  the Cip/Kip family of  cyclin-dependent kinase (CDK) 
inhibitors, which functions to negatively regulate cell cycle progres-
sion at the G1/S boundary in response to antiproliferative stimuli. 
In addition, numerous p27 functions, not related to CDK inhibi-
tion, have been described. For instance, cytosolic p27 plays a role 
in the regulation of  cytoskeleton assembly/disassembly, therefore, 
regulates the cell morphology and movement. In addition, p27 is 
involved in apoptosis and autophagy modulation.4-6

	 Mutations, abnormal expression and mislocalization of  
p27 have been found in many diseases suggesting the important 
role of  p27 in the pathogenesis of  diseases. Human p27 gene (CD-
KN1B) was cloned in 19947 and mapped to chromosome 12p13. 
Later on, p27 mutations were discovered in several types of  human 
cancers including breast cancer, sporadic parathyroid adenomas, 
endocrine neoplasia, small intestine neuroendocrine tumors.2,8-14

	 Several types of  tumors show decreased expression of  
p27, including breast, colon, esophageal carcinomas, head and 
neck cancers, hematological tumors lung, prostate, melanomas and 
ovarian tumors.1,15 The decreased expression of  p27 is due to in-
creased proteasome-mediated protein degradation, correlates with 
poor prognosis of  patients. Several other studies demonstrate that 
a decrease in the expression levels of  p27 protein contributes to 
tumor development by increasing in CDK activity and cell prolif-
eration.15-17

	 In addition, an increased body of  evidence demonstrates 
that mislocalization of  p27 contributes to the development of  ag-
gressive phenotype and anticancer therapy resistance. p27 levels 

and subcellular localization are catalyzed by different kinases that 
modulate degradation and nuclear-cytoplasmic shuttling. In en-
dometrial carcinoma cell lines, p27 is low and/or predominantly 
cytoplasmic p27 phosphorylation at T157 by AKT (protein kinase 
B). Treatment with an AKT inhibitor rescues the mislocalization 
of  p27 to the cytoplasm in endometrial carcinoma cells.18 The 
mislocalization of  p27 has also been identified in other types of  
cancers,19-22 suggesting that sequestration of  p27 in the cytoplasm 
might be an alternative way to inactivate p27-associated inhibitory 
activity in cancers.

p27 AND RISK OF DISEASES 

Reduced expression and mislocalization of  p27 have been identi-
fied as an early event in some types of  diseases. A study by Mc-
Campbell et al demonstrates that loss of  p27 expression is an early 
event in the progression of  endometrial carcinoma in the setting 
of  obesity. p27 expression is severely reduced and/or mislocalized 
to the cytoplasm in histologically “normal” endometrial glands and 
endometrial complex hyperplasia with atypia from obese women 
(CAH) as compared to normal weight women. In luteal phase 
endometrium, p27 expression is high and primarily nuclear. In 
contrast, in the majority of  endometrial CAH, p27 expression is 
severely reduced or absent in >70% of  these early lesions, and is 
harshly reduced or absent in 89% of  primary endometrial carci-
noma.  These data indicate that loss of  p27 is retained as a feature 
of  early (CAH) and neoplastic endometrial lesions arising in the 
setting of  obesity.18 Similar findings are observed in other types of  
human cancers.1,23 p27 is reduced in premalignant and non-invasive 
cancerous lesions, including ductal carcinoma in situ of  the breast. 
The reduced p27 expression is prognostic for subsequent develop-
ment of  oral squamous carcinoma. In addition, in benign prostatic 
hypertrophy and low malignant potential of  ovarian tumors, the 
p27 expression levels are decreased compared to normal tissues.
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p27 AS A PREDICTOR OF TREATMENT RESPONSES

For animal study, Eker rats carrying a defect in the Tsc2 tumor 
suppressor gene are a genetically-defined model for endometrial 
hyperplasia that processes to endometrial carcinoma by 16 months 
of  age.18 At the early stage of  this model, appearing “pre-hyper-
plastic” glands with activated mTORC1 signaling correlate with 
loss of  the wild-type Tsc2 allele. Early life exposure to xenoestro-
gen accelerates the development of  endometrial hyperplasia in 
adult female rats.24 Similar to human disease, loss of  p27 occurs 
early in association with the development of  obesity-associated 
endometrial hyperplasia. The energy balance intervention study by 
McCampbell et al demonstrates that caloric restriction is capable 
of  reducing weight, providing a favorable to leptin/adiponectin 
ratio, and decreasing the circulating insulin levels in response to 
early life exposure to genistein. Importantly, caloric restriction also 
significantly decreases hyperplasia incidence with increased p27 ex-
pression levels and relocalization of  p27 to the nucleus.18

	 In human, the effect of  chemotherapy can also be predi-
cated according to the expression levels of  p27 in some types of  
cancers. For instance, in non-small cell lung cancer25 and ovarian 
cancers,26 decreased expression of  p27 correlates with reduced 
survival in response to platinum-based chemotherapy. In breast 
cancer,27 decreased expression of  p27 is associated with poor out-
come after adjuvant chemotherapy. In head and neck squamous 
cell carcinomas,28 p27 expression serves as a significant predictor 
of  chemotherapy response in multivariate analysis.

FUTURE DIRECTIONS 

Although progresses have been made to understand the role of  
p27 in the pathogenesis of  diseases, there remains a gap in our 
knowledge regarding the abnormal expression and subcellular lo-
calization of  p27, which contribute to the pathogenies of  varied 
diseases. How these events link to the processes of  abnormal cell 
cycle and development of  diseases related to the network of  sig-
naling pathways and epigenome? What is the role of  p27 in favor-
able and unfavorable effects of  chemotherapy? Also, more pre-
clinical studies are needed to determine the effect of  treatments 
in varied types of  cancers and diseases. For instance, the energy 
balance intervention study shows a potent inhibitory effect on hy-
perplasia incidence in Eker rat model. In addition to endometrial 
hyperplasia, Eker rats are also a genetically-defined model for the 
development of  uterine fibroids.29,30 Does this dietary intervention 
also work for uterine fibroids through the same mechanism? Fur-
ther understanding the mechanism and role of  p27 may lead to the 
development of  novel treatment options against many challenging 
diseases.
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