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ABSTRACT

 The use of heel inserts has been shown to reduce the risk of sustaining Achilles Tendon 
(AT) injury in soccer. Likewise, heel lifts have been positively used in the treatment of Achil-
les tendon injury. Despite this evidence however, the mechanism behind such findings is still 
unclear. Consequently, this study recruited nine amateur male soccer players (83.4 kg (±5.8), 23 
years (±3.7), Achilles tendon radius 19.13 cm (±2.3), ankle width 0.072 cm (±0.005), forefoot 
width 0.10 cm (±0.005), size 10 feet) to collect kinetic and kinematic data during 10 running 
trials. Trials were performed on a third generation artificial turf whilst wearing a soccer boot 
with and without a 10 mm heel insert placed inside. From the data obtained, measures of Achil-
les tendon load and rate of loading were estimated. Paired t-tests with the combined participant 
data indicated that there were no overall effect of the heel-insert on peak Achilles tendon force 
(p=0.25), peak plantar flexion moment (p=0.68) or their corresponding loading rates (p=0.92) 
and p=0.97 respectively). Individual participant data did however show that for some the heel 
lift significantly reduced Achilles tendon loading, whilst others it was significantly increased. 
These findings therefore suggest that the response is highly individual. As such the application
of heel lifts should be used with caution and the routine use of the inserts is not recommended.
 
KEYWORDS: Soccer; Participants; Amateur. 

ABBREVIATIONS: AT: Achilles Tendon; UHEC: University Human Ethics Committee; 3D:
Three-Dimensional; MRI: Magnetic Resonance Imaging. 

INTRODUCTION

 Soccer is an intermittent sport, made up of periods of low intensity activity such as 
running and short high intensity movements such as sprinting and jumping.1 These repetitive 
activities place the performer at considerable risk of injury, particularly to the Achilles Tendon
(AT).2-4

 Susceptibility to AT pain and injury has been reduced via the use of commercially 
available heel inserts.5-7 Similarly, these devices have been used successfully in the treatment 
of AT injury.8 The mechanism behind the reduction in pain and injury is unclear, although one 
theory suggests that heel inserts change the orientation of the foot, raising the heel relative 
to the forefoot.9,10 Such orientation is thought to limit the calcaneal friction11 and lower the 
maximum dorsi-flexion angle during the mid-stance phase of gait. This is believed to lessen the 
eccentric force and strain applied to the tendon, used to control the downward movement of the 
centre of mass.9

 To quantify the mechanical change that occurs in response to a heel lift intervention, 
authors have measured external kinematic data.12,13 Others have estimated internal load14,15 al-
though findings are inconsistent. Where differences in load have been shown,15 the magnitude 
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of the heel lift required is greater (18 mm) than the lift found 
to reduce pain and injury (2.5-15 mm).7,8,10 Consequently, the 
mechanism behind the successful application of smaller heel in-
serts is still unclear.

 One potential reason for the lack of supportive findings 
may relate to the measurements being used to quantify internal 
load. During running, it is assumed that between 85-100% of the 
net force generated during dorsi-flexion is from the triceps surae 
muscle group. This force is then applied via the AT to control the 
body’s downwards movement.16,17 This measurement has there-
fore been used as an indicator of AT force.11 Such measurement 
however, does not directly estimate AT force. Such calculation 
requires knowledge of both the force and the moment arm about 
the joint axis of rotation. Dixon18 presented a method that pro-
vides a reliable, subject specific estimate of the forces occurring 
in the AT. However, the accuracy of estimations using this ap-
proach has been limited by the use of Two-Dimensional (2D) 
estimates of both joint moment and AT moment arm. Another 
problem is that some studies have used barefoot trials with the 
heel inserts strapped to the foot.14,19 Due to participants being 
unaccustomed to such conditions, this may cause them to exhibit 
an altered running gait which may have resulted in the lack of 
significant findings observed.20 Use of a soccer boot may there-
fore result in a more typical running strategy in those who are 
familiar with wearing the footwear. Alternatively, it is possible 
that the rate at which the AT structure is loaded rather than the 
peak force applied may be indicative of the mechanism behind 
reduced pain and injury.14 Individual mechanical differences in 
running gait are also an inherent source of variance in running 
patterns and may influence the user’s response to the heel in-
sert intervention. Consequently, some athletes have experience 
significant alterations in estimates of loading while others did 
not.11,14 Such a reason, may explain literature findings that de-
scribes no effect of a heel insert intervention on injury risk.21 As 
a consequence, looking at changes in AT load using pooled data
may disguise the response of some individuals to the interven-
tion.

 The aim of the present investigation is to address the 
previous studies limitations, to assess the influence of a commer-
cially available heel insert on peak plantar flexion moment and 
estimated AT force experienced by soccer players. Likewise, the 
relative importance of the average loading rate of these measure-
ments is also investigated. It is hypothesised that the magnitude
of peak plantar flexion moment and peak AT force, and the aver-
age rate of loading of these measurements, will be significantly 
reduced with the inclusion of the heel insert into a soccer boot
when running at sub-maximal velocity.

METHOD

 Nine male amateur soccer players (83.4 (±5.8 kg), 23 
years (±3.7), Achilles tendon radius 19.13 cm (±2.3), ankle width 
0.072 cm (±0.005), forefoot width 0.10 cm (±0.005), size 10 
feet) participated in this research investigation. All participants 

were heel-toe runners as indicated by distinct, double peaked 
force-time histories.22 All participants regularly participated in
soccer and had recent experience of playing on a third genera-
tion artificial surface. Each participant was pain and injury-free 
for the three months prior to data collection. All participants pro-
vided written consent in accordance with the University Human
Ethics Committee (UHEC).

 Fifteen metres of third generation artificial shock pad 
(Arpro® Expanded polypropylene, 24 mm±0.5 mm thick, Brock 
International) with a measured density of 65 g and a mechanical 
hardness of 1254.3 N (S.D. 48.5 N), was laid across a concrete 
laboratory floor. Placed upon the shock pad was a third gen-
eration turf of similar length (Astroplay MXS 40, Lano sports, 
Herelbeke, Belgium) and 10 kg·m2 of sand mixed with 8 kg·m2 
of rubber crumb (5:4 ratio of sand to rubber). This was distrib-
uted as recommended by the manufacturer. An AMTI force plate 
(960 Hz) was positioned underneath the surface, approximately 
in the centre of the surface in both width and length. This was 
represented by a square marked by tape on the surface.

 Participants performed 10 running trials upon the artifi-
cial turf surface as this is sufficient to obtain stable mean data for
an individual.23 The trials were performed whilst wearing a soc-
cer boot with a moulded stud configuration (Adidas, Copa Mun-
dial) as the control condition. For the experimental condition, a 
commercially available 10 mm Sorbothane heel insert (Sorbo-
thane Shock Stopper, Sorbopro, Layland, Lancashire, UK) was
placed inside each shoe. These conditions were tested for each
participant in a randomised but balanced order.

 The participants were asked to run the length of the 15 
m artificial turf surface at a speed of 3.81 m.s-1 (±5%), monitored 
by photosensitive timing gates positioned one meter either side 
of the force plate. Sufficient time was given for the participants 
to establish a normal running style that ensured that they placed 
their right foot within the marked area without changing their 
normal stride pattern; they then continued their run to the end of 
the artificial turf surface. Participants adjusted their start posi-
tion to ensure they were able to hit the centre of the marked area. 
All trials were monitored by the researcher and any trial that was 
not performed as directed or which were not at the correct speed 
were subsequently repeated.

 To calculate joint moments, each participant wore ret-
ro-reflective markers on the right side of the body (Figure 1). An
eight camera (Pulnix, TM-6703 progressive scan, 120 Hz) au-
tomatic tracking system (Vicon, Motus version 6.1, Englewood,
CO, USA) was used to capture these markers and calculate their
coordinates via the application of Direction Linear Transfor-
mation (DLT). These markers were then used to generate local 
reference co-ordinate systems based on the methods described 
by Soutas-Little, et al.24 Quintic splines25 were fitted to the raw 
coordinates to obtain smooth continuous time histories for first 
and second derivatives. Acceleration data were calculated by the 
first central difference method.
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 The calculation of Three-Dimensional (3D) moments 
about the ankle joint used inverse dynamics and required the 
measurements of ankle joint and forefoot width to allow esti-
mation of the ankle joint centre and the distal point of the foot 
segment. Ankle width was calculated by measuring the distance 
from the lateral malleolus to the medial malleolus with a cal-
liper; forefoot width was measured as the distance between the
first and fifth metatarsal at the widest location. This informa-
tion was entered into the motion analysis software and joint 
centre and distal end points were calculated. When determining 
forefoot width, shoe material thickness was regarded as negli-
gible. The inverse dynamics calculation also required additional 
knowledge of foot moment of inertia, mass and centre of mass. 
The foot mass and centre of mass were calculated using adult 
male cadaver data from Clauser, et al26 and moment of inertia 
data using the data provided by Whitsett.27

 To collect kinetic data, specifically force (Fx, Fy, and 
Fz), centre of pressure (ax, ay) and free moment (Fm), a force
plate (AMTI, Newton, MA, USA) was used. The synchronous 
force and smoothed coordinate data were transferred from the 
Vicon Motus software into a Matlab program (Matlab, 7.0.4, 
The Maths Works, USA). Within the Matlab program, a code 
was written that interpolated the 960 Hz kinetic data to 120 Hz.

 The calculation of three-dimensional moments occur-
ring during plantar flexion was performed using code based on 
previously published methods.28,29 During the movements, the 
conventions of the calculated muscle moments were that a nega-
tive moment represented a resistance to extension of the seg-
ment. Three-dimensional AT force was calculated by adopting a
similar technique to that developed previously.14,19 However, in 
the present study, a three-dimensional moment arm was calcu-
lated as the perpendicular distance between the ankle joint cen-
tre and the line of the AT represented by the two markers on the 
posterior aspect of the shank.

 To account for the influence of the skin thickness that 
surrounds the tendon sheath and the radius of the external mark-
er on the calculation of moment arm length, the radius of the 
marker and the skin covering the AT, was removed from the mo-
ment arm length prior to the calculation of AT force. To calculate 
the skin thickness, the radius of the AT width at approximately 5 
mm from the AT insertion point was measured with a calliper for 
each subject. This was scaled using the skin thickness-AT radius 
ratio reported previously as 3.9 mm skin thickness when the AT 
radius was 7 mm.18 Peak plantar flexion moment and AT force 
were then determined from the calculated moment data. Average 
loading rates for each of these values were also calculated by 
dividing the peak moment and AT force by the time over which 
it had occurred.

 For all participants, the mean and standard deviation 
of the 10 trials per condition was calculated and statistically 
compared using a paired t-test. Normality of data distribution 
was tested by determining skewness and kurtosis statistics. In-
dividual participant data was also separately analysed by paired 
t-tests, comparing the corresponding trial data between the two 
conditions.18 The alpha level was set at 0.05 for all statistical 
tests which were performed using SPSS (IBM SPSS 21, New 
York, NY, USA).
 
RESULTS

 The use of a 10 mm heel insert did not significantly 
reduce the estimated loading on the AT as indicated by the mea-
surements of peak plantar flexion moment and peak AT Force. 
Similarly there were no significant differences observed for the 
measurement of average plantar flexion moment or average AT 
loading rates (Table 1). 

 Individual data analysis was performed by conducting 
separate paired t-tests for each participant and comparing be-
tween conditions using the corresponding trial data. This analy-

Figure 1: Images identifying marker placements used in the moment and moment arm calculation.
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sis indicated that there were significant individual responses to 
the heel insert. Some participants demonstrated a significant in-
crease in loading and loading rate whilst others showed signifi-
cant reductions; other participants showed no significant change 
in these measurements (Figures 2-5).
 
DISCUSSION

 The aim of this study was to address the limitations 
of previous studies to better understand the mechanism behind 
injury reductions with the use of heel inserts. Despite the use 
of three-dimensional moments and moment arm to calculate AT 
force, and the use of footwear, the data failed to support the hy-
potheses that peak plantar-flexion moment and peak AT force 

would be significantly reduced. Similarly, the rate at which the 
AT was loaded was also not significantly reduced when wearing 
the insert.

 When looking at the individual data, a large range of 
peak moment and AT forces magnitudes was shown between 
participants. Such variation is unlikely due to the methodologi-
cal approach since the approach has been shown to be reliable.18 
The estimation of AT force in the current study produced values 
of approximately 5 and 6 times the body weight of the partici-
pants, which is within the magnitudes reported by Komi30 when 
in vivo AT forces were measured. Calculate moment arm lengths 
of between 30-40 mm19 are also comparable to those calculated 
by Magnetic Resonance Imaging (MRI).31,32 These are slightly 

Figure 2: Means and standard deviations for each individual participant for the measurement of plantar
flexion moment collected whilst running with the control (no insert) and experimental (insert) conditions.
*denotes a significant difference at the p<0.05 level.

Figure 3: Means and standard deviations for each individual participant for the measurement of 
average plantar flexion moment loading rate collected whilst running with the control (no insert) and 
experimental (insert) conditions. *denotes a significant difference at the p<0.05 level.

Control Heel insert P

Peak plantar flexion moment (N) 196.9±73.5 192.5±53.3 0.68

Average plantar flexion moment loading rate (Nm.s-1) 1612.2±526.6 1617.4±795.7 0.97

Achilles tendon force (BW) 6.6±3.0 7.3±4.0 0.25

Average Achilles tendon force loading rate (N.s-1) 255715.5±109306.8 259396.3±152438.3 0.92

Table 1: Mean±SD for plantar flexion moment and Achilles tendon force and corresponding loading rate data obtained
whilst running in soccer boots with and without a heel insert.
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longer than found previously15 although morphology differences 
in the participant groups could explain this. The approach did 
not account for any opposing (antagonistic) contribution of mus-
cles such as the tibialis anterior which may contribute to a small 
underestimation of the loading.15 Likewise, failure to account for 
any additional assistance from the other plantar flexors to the net 
muscle moment may have influenced the magnitudes observed.15 
However, the contribution of these muscles have been described 
as ‘trivial’ and activation profiles have been shown to be simi-
lar with and without larger inserts being applied.15 Study find-
ings are also unlikely to have been influenced by differences in 
running velocity, since consistency in velocity was assured via 
the use of timing gates. All participants were also identified as 
heeltoe runners which meant differences in landing style are also 
unlikely to have influenced findings.

 An alternative explanation for these findings may be 
that the response to the heel insert intervention is highly individ-
ual.11,14,19 The paired t-tests performed for each participant sepa-
rately showed that despite the similar landing strategy, two of the 
nine participants exhibited significant differences in peak plantar  
flexion moment. One of these participants exhibited greater peak 

moment and the other a decrease with the heel insert condition. 
The participant who experienced an increased moment also ex-
perienced a corresponding increase in AT force, suggesting the 
increased moment magnitude contributed to this rise in AT force. 
On the other hand, the participant who experienced a reduction 
in moment experienced no change in AT load. A shorter moment 
arm when running with the heel insert could explain this finding, 
resulting in comparable overall force. Further still, two partici-
pants showed significant reductions in peak AT forces with the 
heel insert, without a change in the moment magnitude, which 
again highlights the influence a change in moment arm can have 
on AT force. Various individual responses were also shown in 
the calculated loading rate for joint moments but not AT loading 
rate which may relate to reduced statistical power for this mea-
surement. Such individualized responses are supportive of other 
research on heel inserts11,14,19 and indicate the mechanism behind 
injury reduction is varied. Whilst the participants in the current 
investigation were all injury free at the time of testing, individu-
als with reduced peak forces would therefore respond more fa-
vourably to the intervention when injured. By contrast, given 
sufficient repetition, those with increased loads may experience 
worsening of their symptoms if injured. Treatments using a heel 

Figure 4: Means and standard deviations for each individual participant for the measurement of peak 
Achilles tendon force (measured in body weights, BW) collected whilst running with the control (no 
insert) and experimental (insert) conditions. *denotes a significant difference at the p<0.05 level.

Figure 5: Means and standard deviations for each individual participant for the measurement of average Achilles tendon 
force loading rate collected whilst running with the control (no insert) and experimental (insert) conditions.
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insert should therefore be performed on an individualised basis 
and regular monitoring of the clinical responses (i.e. symptoms 
getting worse) is needed.14

 It has been suggested that those with highest AT force 
under the no heel insert condition, experience the significant re-
ductions with heel-insert when those with lower forces do not.14

This trend was however not supported in the current investiga-
tion. Whilst heel-toe landing strategy was consistent, the indi-
vidual response may relate to specific physiological differences 
such as flexibility at both the ankle and knee joint due to the 
bi-articular nature of the gastrocnemius muscle. Future studies 
investigating the protective and rehabilitative benefits of heel 
inserts need better understanding of these differences to investi-
gate the causative factors for individual response.

 It is also important to acknowledge that the aetiology of 
AT injury has been related to a change in calcaneal friction rather 
than force magnitude. Reinschmidt and Nigg11 postulated that 
reduced inflammation may occur when the calcaneus is lifted 
with respect to the tibia. Such suggestion may however only ex-
plain the treatment benefits for those with insertional Achilles 
tendonopathy.11 It has also been found that the amount of strain 
of the muscle resulting from the applied force is significantly 
reduced with a heel insert. This suggests that rather than reduc-
ing overall force, the heel insert lowers injury risk by reducing 
that amount of lengthening the tendon undergoes.12,15 Another 
problem that arises from the use of peak plantar flexion moment 
and AT force is that the magnitude only refers to axial loads or 
a stretching of the AT.11 The change in heel height may change 
non-axial loads, such as shear and/or bending. This may be af-
fected by the amount of pronation that occurs which has been 
shown to be influenced by heel height.33,34

 In conclusion, the investigation reported no significant 
change in group data when a 10 mm heel insert in used, suggest-
ing that measures of Achilles tendon loading could not indicate 
the mechanism behind reduced injury incidences. Therefore, 
these results do not support the original hypothesis. However, 
single subject analysis suggest that the response is individual 
and that reduced loading is a suggested mechanism behind the 
reduction of injury risk and successful treatment for some. Cau-
tion is recommended however, since significant increases in 
peak AT forces were shown for some individuals, suggesting 
that for these individuals, an increased risk of injury or worsen-
ing of symptoms can occur with the application of a heel lift 
intervention.
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