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ABSTRACT

Surgery, chemotherapy, and radiotherapy are successfully used to treat patients with tumors or cancers. However, the innovation 
of  more potent therapeutic modalities is essential for the efficient treatment of  patients with advanced cancers. More than two 
centuries ago, bacteria have been observed to have beneficial effects in some cancer patients. Virulence factors of  some bacteria 
and their infectious behavior in the body suggest their effectiveness in tumor suppression. At present, bacillus calmette-guérin 
(BCG), a live attenuated strain of  Mycobacterium bovis, is currently used to treat bladder cancer. Some other bacteria have also been 
found to have antitumor activities. Anaerobic bacteria can colonize solid tumors and exert an intrinsic antitumor effect. Salmonella 
is the most studied bacterium in the field of  bacterial anticancer therapy in preclinical studies. In this article, we discuss progress 
in the development of  bacterial anticancer vaccines, especially Salmonella-based vaccines, their antitumor efficacy, and mechanisms 
involved in vaccine-mediated cancer cell death.
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Associated Antigen-4, IFN-γ: Interferon-Gamma; Th1: T Helper Type 1; Omp A: Outer Membrane Protein A.

INTRODUCTION

Hundreds of  years ago, variolation has been used to protect 
humans against smallpox. At the end of  the 18th century, the 

cowpox virus was introduced by Edward Jenner as a safer alterna-
tive to the variola virus, even though the virus was not identified 
at that time. During the 19th century after the discovery of  bacteria 
as causative agents of  infectious diseases, attenuated or killed mi-
croorganisms or a component of  the whole microorganism were 
widely used to induce immunity against infectious diseases. Use 
of  these vaccines led to a dramatic decrease in death induced by 
viral and bacterial agents. In recent decades, researchers attempted 
to develop therapeutic vaccines against cancer with the aim of  re-

cruiting lymphocytes and other immune cells to destroy cancerous 
cells. These vaccines were used as a monotherapy or in combi-
nation with conventional therapeutic modalities such as surgery, 
chemotherapy, and radiotherapy to prevent metastases and recur-
rence of  cancer.1 

 T-cells are an important part of  protective adaptive im-
mune responses. Immunogenic cancer cell growth can result in 
the generation of  antitumor immune responses, especially T-cell 
responses.2 Intravenous infusion of  tumor-sensitized T-cells from 
immune donors has resulted in regression of  large established 
tumors in T-cell-deficient recipients.3,4 High number of  intraep-
ithelial CD8+ tumor-infiltrating T-cells was associated with the 

http://dx.doi.org/10.17140/VROJ-4-111


    Farashi-Bonab S, et al

Vaccin Res Open J. 2019; 4(1): 5-11. doi: 10.17140/VROJ-4-111

Review | Volume 4 | Number 1|6

absence of  lymph node metastases in patients with human pap-
illomavirus-positive cervical cancer.5 High CD8+/CD4+ T-cell ra-
tio of  tumor-infiltrating lymphocytes was associated with better 
clinical outcome in colorectal cancer patients.6 In contrast, it has 
been shown that T-cell-mediated suppression of  antitumor immu-
nity occurs in progressive growth of  an immunogenic tumor.3 In-
deed, immunogenic tumor cells can induce CD8+ T-cell responses, 
however, tumors can avoid immune cell-mediated destruction by 
induction of  T-cell tolerance as well.7,8

 Induction of  T-cell responses is the major aim of  vac-
cines. Vaccines can produce T-cell responses to a large number 
of  antigens. It is preferable to include more than one antigen in 
vaccines to decrease the likelihood of  immune escape. But, immu-
nological tolerance to cancer cell antigens is a usual phenomenon. 
Furthermore, tumor cell growth and proliferation can lead to the 
establishment of  tumor tissue with an immunosuppressive tumor 
microenvironment.9 Therefore, breaking immunological toler-
ance and immunosuppression is necessary for therapeutic cancer 
vaccines. Tumors employ numerous mechanisms limiting natural 
or vaccine-induced antitumor immune responses. Some of  these 
mechanisms include down-regulation of  major histocompatibility 
complex (MHC) class I molecules, lack of  expression of  costimu-
latory molecules CD80 and CD86, expression of  Fas ligand, and 
secretion of  immunosuppressive cytokines such as transforming 
growth factor beta (TGF-β), vascular endothelial growth factor 
(VEGF), and Interleukin 10 (IL-10).10,11 Tumor infiltrating dys-
functional CD8+ T-cells expressing the immune checkpoint mol-
ecule programmed cell death 1 (PD-1) have been detected in var-
ious types of  cancer,12-14 which was associated with poor clinical 
outcome for patients.12 Tumor cells and antigen-presenting cells 
(APCs) expressing PD-L1 can impair proliferation and effector 
function of  PD-1+ T-cells in the tumor microenvironment.15 In 
clinical trials, blocking PD-1/PD-L1 interactions with anti-PD-1 
antibodies led to improved antitumor immunity.16 In addition, in-
creased frequency of  immunosuppressive cells such as regulato-
ry T-cells has been reported in the peripheral blood and tumor 
microenvironment of  cancer patients.17 Depleting these cells or 
blocking their immunosuppression functions by monoclonal an-
tibodies has resulted in improved antitumor immunity in some 
types of  cancer.18 However, more effective therapeutic approach-
es should be developed to produce potent antitumor immune re-
sponses in patients with advanced cancer.

 APCs have a crucial role in antitumor immunity as they 
trigger adaptive immune responses by processing and presenting 
antigens for recognition by T-cells.19 Bacterial products can strong-
ly activate APCs through pattern recognition receptors such as 
toll-like receptors (TLRs). Some bacterial products have antitumor 
properties by apoptosis induction in cancer cells. For instance, the 
bacterial protein azurin, a cupredoxin type of  electron transfer and 
purified redox protein from Pseudomonas aeruginosa, selectively in-
duced apoptosis in human breast cancer cells20 and oral squamous 
carcinoma cells.21 This bacterial protein effectively enters human 
cancer cells, but not normal cells,22 and it has been shown to induce 
apoptosis through stabilization of  the tumor suppressor protein 
p53.23 In some studies, bacterial products have been used as an ad-

juvant for anticancer vaccines.24 In addition, live bacteria express-
ing tumor antigen have been used for tumor antigen delivery in 
vivo.25, 26 These therapeutic vaccination approaches did not lead to 
the eradication of  established experimental tumors or human tu-
mors. Nonetheless, some live bacteria have been successfully used 
for cancer treatment.27 

APPLICATION OF BACTERIA IN ANTICANCER THERAPY

More than two centuries ago, cancer remission was reported in 
cancer patients after recovering from bacterial infections. In the 
late 19th century, William Coley used live and heat-killed bacteria 
such as Streptococcus pyogenes and Serratia marcescens to treat cancer 
patients. The Coley’s heat killed bacteria, known as Coley’s toxin, 
has been used for sarcoma patients until 1963. In the mid-1980s, 
Bacillus Calmette-Guérin (BCG), a live attenuated strain of  My-
cobacterium bovis, was used to treat superficial bladder cancer.27 At 
present, BCG is a common treatment for bladder cancer and it is 
the only bacterial agent approved by the US Food and Drug Ad-
ministration (FDA) for primary therapy of  carcinoma in situ of  the 
bladder. BCG is successfully used to treat some non-invasive blad-
der cancers two weeks after surgery.28 Some other bacteria have 
also been found to have antitumor activities. 

 Almost 70-years ago, it has been shown that anaerobic 
bacteria can selectively grow in tumors.29,30 Several species of  an-
aerobic bacteria have the ability to colonize solid tumors and in-
duce tumor shrinkage. Colonization of  anaerobic bacteria in solid 
tumors is largely due to impaired blood flow and extensive ne-
crosis in the central part of  tumor tissue. Selective localization of  
bacteria in chemically-induced rat mammary tumors was observed 
after systemic injection of  Bifidobacterium longum, a nonpathogenic, 
anaerobic bacterium.31 It has also been shown that obligate anaer-
obic bacteria Clostridium novyi and Clostridium sordelli localize solid 
tumors, especially in the hypoxic parts of  tumor tissues.32 Howev-
er, small tumors, as well as metastatic tumors, may not be target-
ed by obligate anaerobic bacteria as these regions have sufficient 
blood circulation and are not hypoxic. In experimental syngeneic 
and allogeneic murine tumor models using light-emitting bacteria, 
several facultative anaerobic bacterial species such as Escherichia 
coli, Salmonella enterica serovar Typhimurium (S. typhimurium), Vibrio 
cholerae, and Listeria monocytogenesis were able to selectively en-
ter solid tumors and metastases and replicate within tumors.33,34 
Intravenously injected facultative anaerobic bacteria can enter and 
replicate within tumors with different efficacy. It has been shown 
that Escherichia coli robustly replicates in tumor while Streptococcus py-
ogenes shows a much lower level of  replication in the tumor. Marine 
bacteria Photobacterium phosphoreum and Vibrio fischeri did not show 
tumor-specific colonization after intravenous injection. The col-
onization process was independent of  the tumor type but largely 
dependent on the stage of  tumor development.35 The majority of  
injected bacteria have been found in the central part of  the tumors. 
This part of  large tumors is usually necrotic. Moreover, the bacte-
rial dose can affect the colonization of  tumor,35 as a small number 
of  bacteria may be cleared by the body’s immune system. Thus, 
an appropriate number of  bacteria with antitumor properties are 
required to overcome the immune clearance mechanisms in order 
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to survive during tumor entry.

SALMONELLA-BASED ANTICANCER VACCINES, THEIR 
THERAPEUTIC EFFICACY, AND MECHANISMS INVOLVED IN 
CANCER CELL DEATH 

Salmonella is a gram-negative, facultative anaerobe, and a pathogen 
to human and animals. This bacterium is extensively studied in the 
field of  bacterial therapy of  cancer. Some Salmonella strains pref-
erentially colonize solid tumors and show an intrinsic antitumor 
effect. S. typhimurium strains exhibited high tumor colonization fol-
lowing systemic administration into tumor-bearing mice, resulting 
in more than 1×108 CFU per gram tumor tissue.36 After intra-
venous administration of  S. typhimurium, bacteria were found in 
blood, spleen, and liver. Low numbers of  bacteria were detected in 
tumors associated with blood vessels. A rapid increase of  the proin-
flammatory cytokine TNF-α was detected in the blood which was 
linked to a tremendous influx of  blood into tumors by vascular dis-
ruption, resulting in bacteria flushing into the tumor. Blood influx 
was followed by necrosis formation, bacterial growth and infiltra-
tion of  neutrophils.37 Bacterial motility or chemotactic responsive-
ness have not been required for tumor invasion and colonization 
of  Salmonella.38 Both intravenous and intraperitoneal injection of  
S. typhimurium led to complete tumor clearance. In contrast, after 
oral administration, tumor colonization was transient, inefficient, 
and delayed with no therapeutic effect observed.38 Furthermore, 
oral infection with Salmonella may increase the risk of  gall-bladder 
cancer39 and colon cancer.40 This pathogen also has the potential 
for causing sepsis. However, tumor-colonizing Salmonella can be 
readily controlled by systemic administration of  antibiotics.41

 Attenuation of  Salmonella strains has been performed by 
genetic alterations to prevent bacteria-induced septic shock, espe-
cially by lipopolysaccharide deletion.42,43 Several genetically mod-
ified Salmonella strains have been developed such as VNP20009, 
LT2, CRC1674, A1-R, and CRC2631.43-46 Intravenous administra-
tion of  attenuated S. typhimurium, VNP20009, has been evaluated 
in phase I clinical trial for the treatment of  24-patients with nonre-
sponsive metastatic melanoma and one patient with renal cell car-
cinoma. Dose-limiting toxicity, including thrombocytopenia, ane-
mia, persistent bacteremia, hyperbilirubinemia, diarrhea, vomiting, 
nausea, elevated alkaline phosphatase, and hypophosphatemia, was 
observed in patients receiving 1×109 CFU/m2. VPN2009 induced 
a dose-related increase in the circulation of  proinflammatory cy-
tokines IL-1 beta, TNF-α, IL-6, and IL-12. Focal tumor coloniza-
tion was observed in two patients receiving 1×109 CFU/m2 and in 
one patient receiving 3×108 CFU/m2. Objective tumor regression 
was not observed in the patients, including those patients with col-
onized tumors.47 The genetically modified, amino acid auxotrophs, 
S. typhimurium A1 strain grew throughout the tumor, including vi-
able malignant tissue. The bacteria invaded and replicated intra-
cellularly in PC-3 prostate cancer cells grafted into nude mice and 
caused tumor inhibition and regression. Normal tissue was cleared 
of  these bacteria even in immunodeficient athymic mice.45 S. typhi-
murium A1 was also able to inhibit PC-3 human prostate cancer ex-
perimental bone metastasis and significantly improved the overall 
survival of  mice with multiple bone metastases.48

 In a mouse infection model, S. typhimurium mutants from 
which Braun lipoprotein genes (lppA and B) and the multicopy 
repressor of  high-temperature requirement (msbB) gene were 
deleted a minimally induced proinflammatory cytokine produc-
tion was observed. Immunization with these mutants followed by 
challenge with the wild-type S. typhimurium significantly inhibited 
tumor growth, as 88% regression in tumor size was observed in 
ippB/msbB mutant immunized mice. The tumor size regression 
was correlated to downregulation of  CD44 high and CD4+CD25s 
regulatory T-cells.49 Tumors are a rich source of  purines with aden-
osine triphosphate concentrations. A Salmonella strain deficient in 
synthesizing purines by a mutation in the purl gene which encodes 
for purine biosynthetic enzyme has been used with tumor-specific 
localization.50 Live attenuated S. typhimurium genetically modified 
at purl and msbB genes (VNP20009 strain) when administrated 
intravenously to tumor-bearing mice inhibited the growth of  tu-
mors, which did not depend on the presence of  T and B-cells.51 
Increased number of  bacteria was detected in the tumor. The bac-
terial number reached levels 10,000 times higher than in the nor-
mal liver reservoir. Salmonella growth was observed in areas of  the 
tumor which partially inhibit tumor growth. However, a rim of  
tumor survived and resulted in progressive tumor growth.52

 Orally administration of  attenuated S. typhimurium carry-
ing a eukaryotic expression vector that contains the second-derived 
activator of  caspases (Smac) and TRAIL genes under the control 
of  the human telomerase reverse transcriptase promoter inhibited 
tumor growth by 70-90% and prolonged the survival of  mice.53 
Immunization of  mice with recombinant S. typhimurium express-
ing C-Raf  significantly reduced tumor growth in transgenic mouse 
models of  Rafoncogen-induced lung adenomas.54 Vaccination 
with recombinant attenuated S. typhimurium aroA strain secreting 
prostate-specific antigen (PSA) and cholera toxin subunit B in-
duced cytotoxic CD8+ T-cell responses and efficient prevention 
of  tumor growth in mice.55 Intravenous injection of  attenuated S. 
typhimurium strains reduced immunosuppression in the tumor and 
tumor-draining lymph node.56,57 However, injection of  unmodified 
S. typhimurium or genetically-modified S. typhimurium expressing re-
combinant tumor proteins did not result in eradication of  long-es-
tablished tumors in mice. 

 Immunogenic melanoma tumors can grow progressively 
even when the tumor is infiltrated by CD8+ T-cells. Long-estab-
lished immunogenic tumors have been shown to contain a high 
percentage of  PD-1+ tumor-specific CD8+ T-cells. Treatment with 
PD-L1 and CTLA-4 blocking antibodies was ineffective in pre-
venting the growth of  progressive tumors. Exogenous tumor-spe-
cific antigen delivery into tumors using S. typhimurium expressing 
a recombinant antigen resulted in induction of  proliferation of  
tumor-specific CD8+ T-cells in the lymphoid organs and recovered 
effector function of  tumor-specific CD8+ T-cells in the tumor. Im-
munization with this vaccine led to improved mice survival and 
rejection of  32% of  long-established immunogenic melanoma 
tumors. However, following the treatment, the majority of  tu-
mor-specific CD8+ T-cells expressed a high-level of  PD-1 in the 
tumor. Combination of  injection of  S. typhimurium expressing the 
recombinant antigen with programmed cell death-ligand 1 (PD-
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L1) blocking antibody enhanced the expansion of  tumor-specific 
CD8+ T-cells and resulted in 80% tumor rejection.58 Genetically 
modified S. typhimurium harboring short hairpin RNA against in-
hibin alpha subunit caused remarkable cytotoxicity in cancer cells 
compared with unmodified S. typhimurium. This tumor-targeted 
therapy also significantly inhibited the growth of  colon cancers 
and melanomas and prolonged the survival of  mice bearing synge-
neic tumors.59

 Genetically modified S. typhimurium A1 has been shown 
to grow in the cytoplasm of  PC-3 human prostate cancer cells and 
caused nuclear destruction in vitro. The bacteria, introduced intra-
venously or intratumorally, caused tumor inhibition and regression 
of  xenografts in nude mice. S. typhimurium A1 was undetectable in 
the liver, lung, spleen, and kidney, but it continued to proliferate in 
the PC-3 tumor. Intratumoral injection of  the bacteria resulted in 
complete tumor regression by day 20.45 Preferential destruction of  
mitochondria has been observed 8 h after inoculation of  genetical-
ly modified Salmonella in PC-3M human prostate cancer cells, but, 
the nucleus was not apparently affected by Salmonella within 8 h.46 
Salmonella invasions can induce apoptosis in infected cells as ap-
optosis has been observed in Salmonella-infected macrophages60,61 
and intestinal epithelial cells.62 Furthermore, apoptosis of  Salmonel-
la-infected cancer cells can result in antitumor immune responses 
through triggering cross-presentation of  tumor antigens on MHC 
class I molecules of  professional antigen presenting cells to cyto-
toxic T-cells.63

 Infection with Salmonella results in activation of  both 
innate and adaptive immune responses. This bacterium induces 
production of  numerous cytokines such as IL-1β, IL-6, TNF-α, 
IFN-γ, and IL-12 and recruits and activates APCs such as dendrit-
ic cells. Importantly, Salmonella can trigger Th1 polarization which 
is favorable to antitumor immune responses. S. typhimurium out-
er membrane protein A (OmpA) induces the maturation of  tu-
mor antigen-pulsed dendritic cells resulting in IL-12 production 
and generation of  Th1 immune responses. Bone marrow-derived 
dendritic cells stimulated with OmpA of  S. typhimurium generated 
effective antitumor immunity in a mouse tumor model.64 Salmo-
nella-based anticancer vaccines reducing the frequencies or func-
tions of  immunosuppressor cells, such as regulatory T-cells and 
myeloid-derived suppressor cells, may show improved efficacy in 
cancer patients. Intratumoral injection of  attenuated S. typhimu-
rium significantly inhibited Her-2/neu-expressing tumor growth 
which was associated with increased levels of  TNF-α-secreting 
neutrophils (CD11b+Gr1+ myeloid cells) and reduced levels of  
CD4+CD25+Foxp3+ regulatory T-cells in vaccinated mice.65

CONCLUSION    

Salmonella is the most studied bacterium for developing a bacterial 
anticancer therapeutic vaccine. This bacterium is an intracellular 
microorganism and can induce Th1 immune responses and oth-
er antitumor immune cells. Furthermore, Salmonella preferentially 
colonizes solid tumors and exhibits an intrinsic antitumor effect. 
Vaccination with S. typhimurium strains resulted in therapeutic 
outcomes in several preclinical studies. However, enhancing their 

therapeutic efficacy is essential for clinical application in cancer 
patients. Elucidation of  Salmonella-mediated mechanisms in cancer 
cell destruction can lead to improved bacterial anticancer therapy 
by utilization of  bacterial strains with potent cytotoxic activities 
against cancer cells. Increasing our understanding of  the tumor 
cell-specific metabolisms may also be beneficial to identify tumor 
cell metabolic demands and metabolic final products in the tumor 
microenvironment to find more appropriate bacterial strains with 
desired metabolic pathways for tumor-selective colonization and 
destruction in cancer patients.
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