Editorial

Rice Function for Disease Prevention and Establishment of Medical Rice Association

Shaw Watanabe, MD, PhD

1Lifescience Promoting Association, Daiiyo-cho 25-3-1004, Shinjuku-ku, Tokyo 160-0015, Japan
2Asia Pacific Clinical Nutrition Society (APCONS), Department of Food Science and Nutrition, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China

*Corresponding author
Shaw Watanabe, MD, PhD
Lifescience Promoting Association, Daiiyo-cho 25-3-1004, Shinjuku-ku, Tokyo 160-0015, Japan; Fax: +81-3-5379-7786; E-mail: watashaw@lifescience.or.jp

Article information
Received: March 26th, 2019; Accepted: March 27th, 2019; Published: April 2nd, 2019

Cite this article

When I visited Bangkok in Thailand about five years ago, I saw the label “medical rice” on a package of ‘diabetes and health promotion’ rice, and I was hopeful that the concept could be widened beyond Thailand. On December 10-12, 2014, the “East Asia Functional Standardization of Rice Conference” was held at Kyoto Research Park to promote the idea among related countries.

Since then, I am considering what is “medical rice”.1 To say ‘medical rice’ we need evidence from human studies. We have learned of the health effects of unpolished brown rice, genmai in Japanese, from Japanese history. Sagen Ishizuka (1850-1909) was a pioneer doctor in the Imperial Japanese Army who proposed the concepts of shokaika (eating education) and the macrobiotic diet. He was one of the first to investigate the nutritional value of whole grains as well as kelp, radish, and stdafx. In Kenji Miyazawa’s famous poem “Unbeaten by rain, Unbeaten by wind”, his daily intake “With a handful brown rice a day, miso and a small amount of vegetable suffice” was confirmed to contain all necessary daily nutrients by our recalculation.3

We thought that it was necessary to clarify the actual health effects of brown rice diet by a well-designed epidemiological study, so we started GENKI study (Genmai Evidence of Nutrition for Kenko (health) Innovation).4,5 There are 1,223 participants from groups promoting a brown rice diet. Brown rice eaters show lower body mass index (BMI) in men and women at all ages. The average BMI in males was 22.0±3.2 kg/m² and 20.7±2.8 kg/m² in females. Dietary habits consisting of brown rice, rich in vegetables, and avoidance of meat seemed to support healthy life and quality of life (QOL).6 Obese people were more likely to eat white rice and had a high risk of lifestyle-related diseases, such as diabetes and hypertension. On the contrary, brown rice eaters were less obese and had a good lifestyle with a low risk of illness.

In addition, brown rice eaters showed healthy bowel movements, which suggested a good intestinal environment.6

Actually, brown rice eaters showed abundance of Firmicutes and low relative abundance of Fusobacterium in the intestinal microbiota at the phylum level. Abundance of microbiota at species level showed a rich Faeulobacterium prausnitzii (5.28%), and then Blautia wexlerae (3.67%), Fusicatenibacter saccharivorans (3.41%), Megamonas funiformis (3.35%), Collinsella aerofaciens (3.21%), and Bacteroides vulgatus (3.12%).6 They belong to Firmicutes phyla and butyrate producing bacteria. Butyrate is the preferred energy source for the colon epithelial cells, and contributes to the maintenance of the epithelial barrier functions of intestinal mucosa, and has immunomodulatory and anti-inflammatory properties.7 Blautia is considered to control the intestinal immunity. Dietary fiber in brown rice seems to be the most important factor, but other ingredients could influence bacterial co-existence.8-10 Then, Bifidobacterium adolescentis (2.35%) and B. longum (1.92%), Bacteroides uniformis (2.22%), B. plebelius (1.96%), and B. dorei (1.71%), and Akkermansia muciniphila (2.16%) were followed. Brown rice eaters, compared with the white rice eaters, showed less Actinobacteria (12.1 vs. 8.5% p=0.078) and Fusobacterium (1.6 vs. 0.018%, p=0.011). These are pathogenic in intestinal conditions.

So, brown rice could be considered to be typical medical rice by contributing to healthy life.1 Organic brown rice contains many functional ingredients, such as γ-aminobutyric acid (GABA), γ-oryzanol, ferulic acids with high antioxidant function, in addition to the dietary fiber. The wax-free brown rice is made to improve palatability by scraping the surface wax layer from rice grain. Wax free brown rice contains almost all nutrients of brown rice.

© Copyright 2019 by Watanabe S. This is an open-access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which allows to copy, redistribute, remix, transform, and reproduce in any medium or format, even commercially, provided the original work is properly cited.
Dietary fibers remained the same as in brown rice, although water-soluble fiber seemed to be more easily dissolved than insoluble dietary fiber during boiling.

From wax-free brown rice a low protein brown rice has been produced. The protein in rice is stored in two different types of compartments. The major proteins are prolamin and glutelin. Prolamin is the alcohol soluble protein that remained after salt extraction of globulin. Glutelin is the dilute-acid or dilute-alkaline soluble protein after prolamin extraction. Most of the prolamin is present at the periphery in whole rice grains, so prolamin could be easily removed by the enzymatic digestion on polished white rice, but it has been difficult to remove from brown rice directly. Removal of the wax layer made it possible to immerse the enzyme solution beneath the bran layer. Removal of rice protein yielded low protein brown rice (LPBR) which is beneficial for chronic kidney disease patients.

Medical rice for chronic kidney disease (CKD) should contain enough energy source and low protein, as well as low potassium and phosphate. Reduction of these minerals is a great benefit for CKD patients, because hyperkalemia and hyperphosphatemia are often difficult to avoid when eating meat. Distinct mechanisms of low protein diet for CKD patients are identified, such as improvement of hyperphosphatemia and hyperkalemia, decrease in urinary protein, improvement of subjective symptoms, prevention of complication, and good control even after the introduction of hemodialysis for better survival. Protein overload promotes glomerular hyper-infiltration which causes prefibrotic effects. Recently, the therapy of CKD targeted at reducing hyperfiltration within the glomerular capillaries by using the angiotensin converting enzyme inhibitor or angiotensin receptor blocker to dilate the glomerular arterioles. Other classes of diabetes medications, such as glucagon-like peptide-1 (GLP-1) agonists, peptide-dase-4 (DPP-4) inhibitors and sodium-glucose co-transporter 2 (SGLT2) inhibitors, are also thought to slow the progression of diabetic nephropathy. However, the dietary therapy is far more cost-effective. High protein diets acutely elevate the glomerular filtration rate, and substitution of low protein brown rice for bread or western foods could delay the progression toward end-stage renal disease.

Looking at the degree of achievement of Japanese rice researches, breeding and production of brand rice, large embryo rice, etc., were developed, and bran-grind (BG) rinse-free rice and low protein brown rice became available. The protein in rice is stored in two different types of compartments. The major proteins are prolamin and glutelin. Prolamin is the alcohol soluble protein that remained after salt extraction of globulin. Glutelin is the dilute-acid or dilute-alkaline soluble protein after prolamin extraction. Most of the prolamin is present at the periphery in whole rice grains, so prolamin could be easily removed by the enzymatic digestion on polished white rice, but it has been difficult to remove from brown rice directly. Removal of the wax layer made it possible to immerse the enzyme solution beneath the bran layer. Removal of rice protein yielded low protein brown rice (LPBR) which is beneficial for chronic kidney disease patients.

Integration of these knowledges under the recently established Medical Rice Association by researchers, rice-processing industries, farmers and consumers could produce great energy for building a healthy society. Researchers, farmers, and distributors in Japan were able to establish the association with the purpose of constructing and computerizing the evidence of the fragmentary research, and disseminating it widely to the society. With the cooperation of producers and consumers, standardization of medical rice should enable disease prevention with diet-based evidence for health. Within the association, there will be a research grant committee and a function evaluation committee, and we hope to foster young researchers in this field.

Rice is the main staple food for approximately 70 percent of the world’s population, mainly living in ten areas of the Asia-Pacific region. In many countries, rice contributes to overall better health by supplying dietary energy, protein and fat. It accounts for more than 50% of the diet in Bangladesh, Myanmar, Lao People's Democratic Republic, Vietnam and Indonesia. The high prevalence of diabetes among polished white rice eaters has become well-known. Rice with high amylose with a low glycemic index (GI) may be used to prevent diabetes, and high GABA containing large germ rice could contribute to mental health. In this regard, the nutritional aspects of brown rice should be re-evaluated, and further development should produce wonderful medical rice.

REFERENCES


