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ABSTRACT

 Knee kinematics has been studied since the seventeen century with increasing enthu-
siasm: recent studies showed that femoral rollback, femoral external rotation and tibia internal 
rotation are all required for normal daily living. Total Knee Arthroplasty (TKA) is a successful 
procedure in treating subjects with severe knee osteoarthritis: unfortunately, knee joint kine-
matic after TKA can differ substantially when compared to the kinematic of the normal knee. 
Numerous kinematic studies using standing and mobile fluoroscopy, gait analysis technologies 
and simple in vitro techniques have extensively evaluated those differences. In this review 
article, the authors reviewed the contribution of different fluoroscopic studies in understanding 
the biomechanical differences between the native and the replaced knee.
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INTRODUCTION

 Total Knee Arthroplasty (TKA) represents a very successful procedure in the treat-
ment of patients affected by severe end-stage tricompartimental knee osteoarthritis. Many pa-
tients return to normal daily living activities, including low-impact recreational activities like 
biking, golfing, swimming and trekking.1 Unfortunately, TKA patients still experience sub-
stantial functional impairment compared with their age- and gender-matched peers, especially 
when doing biomechanically demanding activities.2 Patient satisfaction after TKA reflects 
these differences: despite recent advances in surgical techniques, implant designs, and patients 
education, the satisfaction rate after primary TKA between the last decade of the twentieth cen-
tury and the first decade of the twenty-first century increased only by 3%, leaving 15% of the 
patients not fully satisfied.3

 The normal knee motion is quite complex since Giovanni Alfonso Borelli first de-
scribed the biomechanical patterns of the knee joint.4 In recent times, it has been shown that, as 
the normal knee goes into flexion, the lateral femoral condyle moves progressively posterior on 
the tibial plateau (“postero-lateral rollback”), while the medial femoral condyle pivots with a 
negligible posterior motion.5,6 The authors of the current editorial note quantified this motion in 
a dynamic MRI study performed in healthy subjects: at 145 degrees of knee flexion, the aver-
age lateral condyle rollback was 15 mm while the average medial condyle rollback was 3 mm 
(Figure 1).7 Such strongly asymmetric “rollback” of the femoral condyles during normal knee 
flexion is accompanied by a contemporaneous external rotation of the femur with respect to the 
tibia (“medial pivoting”).8 

 Numerous kinematic studies using static and dynamic fluoroscopy,6,8,9 gait analysis,10 
and in vitro techniques11,12 have revealed profound differences between normal knee motion 
and TKA kinematics. Theoretically, these differences might play a major role in understanding 
the still high “un-satisfaction” rate among patients following primary TKA.
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 Video fluoroscopy was first used to define TKA geom-
etry and kinematics in vivo in the early 1990s13: since then, many 
studies investigated the relationship between TKA designs and 
joint kinematics. 

 Currently, TKA systems differ by many characteristics: 
two of them, the design of the femoral condyle on the sagittal 
plane (single versus multiple radii) and the level of constraint 
(Cruciate Retaining-CR, Postero-Stabilized-PS, Medially Con-
gruent-MC, Medial Pivot-MP and Sagittally Stabilized-SS) have 
been extensively studied with static and, more recently, dynamic 
fluoroscopy using adapted C-arm units. This editorial note re-
views the results of those fluoroscopic studies and compares 
them with the kinematics of normal knees.

FLUOROSCOPIC ANALYSIS

 Komistek et al6 used static fluoroscopy to study the bio-
mechanical proprieties of normal knees: in that report, during 
deep flexion activities, subjects experienced an average of 12.7 
mm of lateral condyle motion, whereas the medial condyle mo-
tion was only 2.9 mm. During deep flexion activities, their sub-
jects experienced a significant axial rotation of the tibia relative 
to the femur (average 13°). 

 Cruciate-Retaining (CR)-TKA designs have been ex-
tensively studied with static fluoroscopy since early 2000s: 
those designs have shown a lack of posterior femoral rollback 
and a more anterior tibio-femoral contact point during deep 
knee flexion14,15 when compared with normal knees. This last 
phenomenon has been described by many authors as “paradoxi-
cal motion”16-19: this unwanted finding has been attributed to the 
incompetent restraining function of the posterior cruciate liga-
ment. 

 Because of these biomechanical differences between 
CR-TKA and the native knee, Posterior-stabilized (PS)-TKA 
have been introduced in the 1970s as an alternative to CR de-
sign in order to reproduce normal knee mechanics. Dennis et 
al20 fluoroscopically analyzed 811 patients after primary TKA 
performed using 33 different designs during stance phase of gait 
or a deep knee bend maneuver: kinematic patterns of fixed ver-
sus mobile-bearing designs were similar in which femorotibial 
contact remained relatively stationary with minimal AP femoro-

tibial translation (“postero-lateral rollback”) respect to the native 
knee; on the other side, paradoxical anterior femoral translation 
during deep knee flexion was most commonly observed in the 
CR-TKA designs. In the same study, the normal medial pivoting 
kinematic pattern (femoral external rotation/tibial internal rota-
tion) was observed in only 55% of all knees during deep knee 
flexion.

 Shimmin et al,21 in a fluoroscopic study evaluating a 
medial pivot (MP) TKA design (Saiph, MatOrtho, Leatherhead, 
UK) characterized by full conformity of themedial articular sur-
face (ball in a socket design) and by partial conformity of the 
lateral compartment (not flat polyethylene), showed that the me-
dial femoral condyles translated an average of 2 mm posterior to 
the tibial sulcus while the lateral femoral condyles translated an 
average of 6 mm posterior to the tibial sulcus during maximum 
knee flexion. None of the studied knees showed anterior femoral 
translation (“paradoxical motion”) during flexion.

 Recently, Scott et al22 fluoroscopically evaluated a sagi-
tally-stabilized medially spherical TKA (GMK Sphere, Medacta 
International AG, Castel San Pietro, Switzerland): this TKA de-
sign is characterized by a completely spherical femoral condyles 
and a tibialpolyethylene which is spherical medially and com-
pletely flat laterally. In this study, the deep flexion activity in 
implanted knees showed a mean of 8° tibial internal rotation, 2 
mm medial posterior translation and 8 mm posterior translation 
on the lateral condyle. 

 The anatomy of the posterior femoral condyles has 
been extensively studied in the last thirty years: standard ra-
diologic,23 magnetic resonance assisted24 and computer-assisted 
studies25 have shown that the posterior femoral condyles have 
single-radius geometry. Historically, TKA manufactures have 
released two different femoral designs: a single-radius (SR) and 
a multiple-radii (MR). The SR TKA consists of symmetrical 
femoral condyles that incorporate a SR in the sagittal plane. The 
MR-TKA consists of a multiradii femoral design in which the 
lateral femoral condyle is larger than the medial femoral condyle 
in the sagittal plane. Recently, Grieco et al9 compared in vivo 
the kinematic differences in patients implanted with a SR vs. a 
MR-cruciate retaining (CR) design during deep knee flexion us-
ing a novel mobile fluoroscopy system. These authors reported 
that SR and MR groups experienced statistically similar average 

Figure 1: Dynamic Knee MRI evaluation of the tibiofemoral contact point during deep knee flexion (145°) 
in healthy subjects. A) Medial Compartment; B) Lateral Compartment. The tibiofemoral contact point is 
significantly more posterior in the lateral compartment respect to the medial compartment. 
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AP motion in the lateral condyle: - 0.43 mm (SR) vs. – 1.0 mm 
(MR); the SR group had significant more AP motion (+ 3.51 
mm) compared to the MR group (- 0.42 mm) in the medial con-
dyle. On the other side, they showed that the SR group had a sig-
nificantly larger amount of physiological axial rotation (average 
5.20°) compared to the MR group (average 0.75°).

CONSIDERATIONS

 Many methods have been historically used to evaluate 
normal and following TKA knee kinematics. The great advan-
tage of video fluoroscopy is to allow analysis of multiple “in-
vivo” activities done in weight-bearing conditions. The major 
limitation of this technique has always been that only on-site 
activities (i.e. deep knee flexion) were originally tested by many 
authors. The introduction of mobile fluoroscopy9 allows to study 
TKA in vivo kinematics during normal walking and walking up 
and down an inclined ramp. 

 Classic fluoroscopic studies6,20-22 (Table 1) have shown 
that normal knee kinematics is not fully reproduced by many 
TKA designs. Severe kinematic abnormalities, including re-
duced posterior femoral rollback, paradoxical anterior femoral 
translation, reduced axial rotation patterns, are commonly pres-
ent in our TKA patients. The “perfect” TKA should be biome-
chanically characterized by posterior femoral rollback during 
deep knee flexion and by an axial rotation in its medial compart-
ment. Recent fluoroscopic studies by Shimmin et al21 on medial 
pivot (MP) and by Scott et al22 on sagittally-stable (SS) designs 
showed that “medially-constrained” designs reproduce closer 
kinematic patterns to normal knees when compared with cruci-
ate-retaining (CR) and posterior-stabilized (PS) designs.

 Further, long-term clinical investigations on “medial-
ly-constrained” TKA designs are needed to understand if their 
promising fluoroscopic findings correlate with a higher postop-
erative satisfaction rate in our TKA patients.
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