Brief Research Report

Francesco Fazio, DVM, PhD
Associate Professor
Department of Veterinary Sciences
Polo Universitario Annunziata
University of Messina
98168 Messina, Italy
Tel. +39 0903503516
Fax: +39 0903503975
E-mail: ffazio@unime.it

*Corresponding author

Influence of Body Size on Blood Hemogram in Rainbow Trout

Oncorhynchus Mykiss (Walbaum, 1792)

Francesco Fazio, DVM, PhD; Concetta Saoca, BSc; Irene Vazzana, BSc; Giuseppe Piccione, DVM

Department of Veterinary Sciences, University of Messina, Polo Universitario dell' Annunziata, 98168, Messina, Italy

ABSTRACT

Aim: The aim of this study was to investigate the influence of body size on hematological parameters in Rainbow trout *Oncorhynchus mykiss* (Walbaum, 1792).

Materials and Methods: For the purpose of the study, fifty Italian trout were divided into two groups: Group S1 (n=25) of weight (300-500 g) and length (25-32 cm); Group S2 (n=25) of weight (510-700 g) and length (33-38 cm). Blood samples were collected from each fish, to record the count of white blood cell (WBC), red blood cell (RBC), determine the hemoglobin concentration (Hb), hematocrit (Hct) value, mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH) mean corpuscular hemoglobin concentration (MCHC), and thrombocyte count (TC).

Results: The collected blood was analyzed using an automatic method to determine the hematological parameters. Statistical analysis (unpaired *t*-test) showed a significant effect of size (*p*<0.05) on the RBC count, Hb concentration and Hct value. No statistically significant differences were observed in the WBC count, MCV, MCH concentration, MCHC and TC.

Conclusion: The data reported in this study contributed towards the knowledge of hematological evaluation in farmed trout and showed that fish size was an important factor that helped establish the “physiological range” supporting the accurate interpretation of hematological parameters in examining the health status of this species.

KEY WORDS: Body size; Biometric indices; Hematological parameters; Trout.

ABBREVIATIONS: RBC: Red Blood Cell; Hct: Hematocrit; Hb: Hemoglobin Concentration; MCV: Mean Corpuscular Volume; MCH: Mean Corpuscular Hemoglobin; Mean Corpuscular Hemoglobin concentration; MCHC: Mean Corpuscular Hemoglobin Concentration; WBC: White Blood Cell; TC: Thrombocyte Count; EDTA: Ethylenediaminetetraacetic Acid; DO: Dissolved Oxygen.

INTRODUCTION

Global fish production has notably increased in the last five decades and intensive farming has contributed significantly towards the development of aquaculture. Rainbow trout is a major farmed species in Italy and the second most common to be farmed in Europe after the Atlantic salmon. Together with commercial globalization, increasing trout farming consequentially leads to several fish diseases, thus rendering it necessary to prevent and cure related conditions while increasing the demand for veterinary drugs to treat the aquatic species. The evaluation of blood parameters assists in the culture of fish by facilitating the early detection of diseases and identification of sub-lethal conditions affecting the productivity. Various literary references report about the blood parameters and their variations observed in fish living in different habitats. In a previous study conducted to establish the reference range for haematological and biochemical values on *Clarias gariepinus*, a positive correlation was observed between the biometric and blood indices. Variations with respect to the normal values of blood parameters...
exist in fish and can be attributed to some internal and external factors such as physiological homeostasis and environmental factors. Body size alongside water quality and temperature, may contribute to the variability in the haematological parameters that are difficult to interpret. Considering that the changes in the blood parameters depend on the biometric parameters and the physicochemical conditions of the water, the aim of this study was to evaluate the influence of body size on some haematological parameters in the farmed trout.

MATERIALS AND METHODS

A total of 50 Rainbow trout (Oncorhyncus mykiss) in excellent health status and supplied by a commercial farm in Palazzolo Acreide (Siracusa, Italy) were investigated in this study. All the fish were subjected to a natural day/night cycle (11L/13D) and were fed with a commercial dry food (crude protein 46%; crude fat 20%; ash 10%; fiber 1.5%) distributed twice daily for 7 days a week. The fish being studied were considered healthy on the basis of an external examination of any sign of abnormalities or clinical infestation. In the farm, the physical and chemical characteristics of water were recorded. Temperature, salinity, pH and dissolved oxygen (DO) were measured using a handheld multiparameter instrument (model YSI 556 MPS - Ohio, USA) and these values were recorded as has been shown in Table 1. All the samples were analyzed immediately (T0) by an anticoagulant agent for the recording of hematological parameters obtained in the two different size groups of farmed trout Oncorhynchus mykiss (Walbaum, 1792) showing a statistically significant difference.

RESULTS

The results of this study showed the influence of body size on some haematological parameters in farmed trout as reported in Table 2. Statistical analysis (unpaired t-test) showed a significant effect of size (p<0.05) on some parameters (RBC, Hb and Hct). In particular, a significant increase in the RBC count, Hb concentration and Hct value was observed for the fish of Group 2 relative to that of Group 1. No statistically significant differences were observed in WBC, MCV, MCH, MCHC and TC.

DISCUSSION

Hematological parameters are closely linked with metabolism thus, these results could be attributed to the higher metabolic activity and high energy demand during growth. The increased metabolic demand during the growth of the trout could increase the volume of RBC, which could lead to a consequential increase in the Hct value. Some authors observed that the values of RBC count, Hb concentration and Hct value increased with an increase in the fish size. Moreover, in fish, the hematological parameters are closely associated with the metabolic activity...
related to size. Previously our researchers have shown that the values of RBC count and Hb concentration were higher in mullet compared to other species with the highest biometric parameters. It should be noted that the differences recorded in blood parameters between the fish of various sizes are genetically determined, even though these differences might be due to the higher metabolic rate of bigger fish compared to smaller ones. In a research conducted on Nile tilapia Oreochromis niloticus, there was an effect of fish size on all the parameters except for MCV. In a study on Mugil platanus, it was verified that the mean values for Hct, Hb, MCV, MCH and MCHC showed a slight tendency to increase as the fish continued to grow larger. In addition, larger individuals present higher mean values for MCV, MCH and MCHC for Dolphin fish Salminus maxillosus. WBCs, the cells responsible for the body's defence system, are considered an important parameter to evaluate the health status of the fish; the recorded values of WBC count are indicative of their immune responses and determine the ability of the fish to fight infections. According to some authors, the WBC levels depend on various factors such as water temperature, environmental stress, fish age and sex. Species with higher counts of WBC were able to fight infections more effectively than other species. Among the defense cells of fish, the thrombocytes have a phagocytic capacity besides their functions in coagulation. Our findings did not suggest the influence of body size on WBC and TC, but it is probably on account of a small number of fish being studied.

CONCLUSION

In conclusion, our study suggests that the determination of hematological parameters require a correct interpretation in relation to the body size. Body size is an important factor, not only from the commercial point of view, but also for the accurate determination of hematological parameters, that many veterinarians demand to effectively control and manage the health status of the aquaculture fish.

AUTHORS’ CONTRIBUTIONS

All authors have made substantial contributions to each step of the experimental procedure and article preparation. The idea for this study was conceived by Francesco Fazio and Giuseppe Piccione. The experiment was designed by Francesco Fazio. The experiment was performed by Concetta Saoca and Irene Vazzana. The data was analyzed by Francesco Fazio. The article was written by Francesco Fazio and Concetta Saoca.

CONFLICTS OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES

