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 ABSTRACT

This fibroblast growth factor-23 (FGF-23) has been found as a circulating hormone and pathogenic factor in many disease 
conditions. This review focuses on recent advances in FGF-23 as a therapeutic target, including fibroblast growth factor receptors 
(FGFR) tyrosine kinase inhibitor, FGF-23 antibody, FGF-23 C-terminal peptide, CYP24A1 inhibitor, and FGF-23 antagonist. We 
also update the advantages and disadvantages of  targeting upstream and downstream molecules in FGF-23 signaling pathways.

   Copyright 2018 by Xiao Z. This is an open-access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which allows 
to copy, redistribute, remix, transform, and reproduce in any medium or format, even commercially, provided the original work is properly cited.
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INTRODUCTION

Fibroblast growth factor-23 (FGF-23) is a bone-derived hor-
mone that inhibits phosphate reabsorption and 1,25-dihy-

droxyvitamin D3 (1,25(OH)2D) production by the kidney1,2 
(Figure 1). Physiologically, FGF-23 regulates systemic phosphate 
homeostasis and vitamin D metabolism through a bone-kidney 
axis.3,4  However, excess FGF-23 in genetic disorders leads to hy-
pophosphatemic rickets as well as may play a pathogenic role in 
adverse outcomes in chronic kidney disease.5-7 Primary increases in 
FGF-23 have been reported in rare hereditary hypophosphatem-
ic disorders in humans and their mouse homologues,8-19 including 
X-linked hypophosphatemic rickets (XLH)/Hyp mice, caused by 
inactivating mutations of  Phex,14,15,20 autosomal recessive hypophos-
phatemic rickets 1 (ARHR1), caused by inactivating mutations of  
Dmp1,15,20 ARHR2, caused by inactivating mutations in ENPP1,10,14-

17 and Raine Syndrome (RNS), caused by inactivation mutations 
in FAM20C21,22 as well as tumor-induced osteomalacia (TIO).23-25 
Secondary elevations of  FGF-23 occurs in chronic kidney disease 
(CKD).1,26 Elevated FGF-23 is initially an adaptive response to al-
tered mineral metabolism in chronic kidney disease (CKD)27, but 
chronic elevations of  FGF-23 are maladaptive and linked to in-
creased morbidity and mortality,6 cardiovascular disease,6,28-31 and 
inflammation32,33 in CKD. Therefore, control of  FGF-23 levels 
as well as its upstream and downstream signaling pathways could 
serve as a potential target to improve outcomes in many disease 
conditions. Currently, fibroblast growth factor receptors (FGFR) 
tyrosine kinase inhibitor (NVP-BGJ398),34,35 CYP24A1 inhibitor,36 
FGF-23 antibody (KRN23),37,38 FGF-23C-terminal peptide,39,40 

and FGF-23 antagonist41 are being developed to treat disorders 
of  excess FGF-23. This review will summarize recent advances in 
these areas.

FGFR KINASE INHIBITOR

There is compelling evidence to support pharmacological 
inhibition of  FGFRs in excess FGF-23. First, FGF-23 signaling 
is transduced by members of  the FGF receptor (FGFRs, 1, 3, 4) 
family in conjunction with the essential co-receptor Klotho, which 
confers tissue-specificity for endocrine FGF-23 signals owing to its 

Figure 1. FGF-23 Signaling in Renal Tubule Cells.FGF-23, FGFR, and α-Klotho (α-
KL) form Ternary Complex to Activate FGFR Tyrosine Kinase Activity, Transduce FGF-
23 Signaling to Downstream Targeted Genes NPT2A, CYP27B1, and CYP24A1, and 
Regulate Renal Phosphorus Homeostasis and 1,25(OH)2D Metabolism 
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predominant expression in kidney (Figure 1).42 Second, hereditary 
hypophosphatemic disorders such as XLH/Hyp and ARHR1 
involve activation of  FGFR signaling and FGF-23 expression 
in osteocytes17 and osteocyte-specific deletion of  Fgfr1 in Hyp 
mice markedly suppresses FGF-23 production.18 Third, a gain-
of-function mutation in FGFR1 causes osteoglophonic dysplasia 
(OGD), which is also associated with hypophosphatemia and 
elevated FGF-23 levels.43 Theoretically, it is useful to develop 
FGFR inhibitors that control FGF-23 signaling and production in 
disorders of  excess FGF-23. In this regard, FGFR tyrosine kinase 
inhibitor (NVP-BGJ398) has been developed to treat FGF-23-
mediated hypophosphatemic diseases a and has been shown to 
block both the production and end-organ effects of  FGF-23.34,35 
However, NVP-BGJ398 is a small molecule with potent inhibitory 
activity of  FGFRs 1, 3, and 4 and lacks selectivity for FGF-23/
FGFR/α-KL signaling, and their generalized ability to inhibit 
FGFRs in multiple tissues would have undesirable effects.34,35 In 
addition, a small molecule, SSR128129E (SSR), which binds to 
the extracellular part of  FGFR, was reported to act as a FGFR 
antagonist.44,45 So far, SSR128129E are being developed as anti-
tumor drugs since these compounds have limitations, including 
specificity and potential toxicities. At present, there are no small 
molecules that specifically modulate FGF-23 activation of  FGFR/
α-KL complexes. The discovery of  such molecules would not only 
provide research tools to elucidate FGF-23 biological actions, but 
also would advance the discovery of  new treatments based on this 
novel bone/kidney endocrine network.

FGF-23 ANTIBODY

A FGF-23 specific antibody [Burosumab, KRN23, Ultragenix 
(USA) and Kirin (Japan)] has been developed as a therapy for 
XLH.37,38,46 KRN23 binds to and inhibits the biological activity of  
FGF-23. However, loss of  FGF-23 function can have serious side 
effects, including hyperphosphatemia and soft-tissue calcifications. 
Indeed, preclinical studies in CKD models show that inhibiting 
FGF-23 with a high affinity blocking antibody increased mortality, 
38 leading to no current plans to test KRN23 in CKD. Lowering 
FGF-23 in CKD is controversial, since use of  calcimimetics to 
suppress PTH leads to modest reductions in FGF-23 and improved 
survival in patients with end-stage renal disease (ESRD).47 Since 30 
million people or 15% of  USA adults are estimated to have CKD 
and elevated FGF-23,48 identifying a drug to dose-dependently 
and reversibly reduce FGF-23 may improve CKD outcomes. To 
avoid toxicity, a low affinity FGF-23 blocking antibody (KRN23) 
was selected for clinical development. Clinical trials with KRN23 
show efficacy to raise serum phosphate and improve rickets in 
XLH.37,38 Although hyperphosphatemia occurred in ~6% of  
the KRN23 treated XLH patients, biologics such as KRN23 are 
plagued by high cost, the need for parenteral delivery, long half-life, 
and difficulty with dose titration. From the business perspective, 
there is an opportunity to develop a small, orally bioavailable small 
molecule to inhibit FGF-23. 

FGF-23 C-TERMINAL PEPTIDES

Full-length FGF-23 is a 32-kDa protein that can be cleaved at 
176RXXR179 site by a cellular endoproteasefur in, leading to the 

22-kDa N-terminal and 16-kDa C-terminal fragments.13 Recent 
studies have shown that the C-terminal tail of  FGF-23 (FGF-23C) 
can compete with full-length ligand for binding to the FGFR/α-
KL complex, and hence can antagonize the phosphaturic activity 
of  FGF-23 in vivo, both in healthy rats and in a mouse model of  
phosphate wasting disorders.39,40 In order to increase the half-life 
of  the FGF-23C peptide, the investigators generated a FGF-23C 
Fc fusion molecule and demonstrated that repeated injection of  
this molecule (twice a week, 10 mg/kg)selectively modulates the 
phosphate pathway via regulation of  NPT2A expression in vivo by 
competitive antagonism of  FGF-23 binding to the FGFR/α-KL 
co-receptor in Hypmice, a preclinical model of  XLH.The unique 
ability of  FGF-23C Fc molecule to preferentially modulate the 
FGFR1/α-KL phosphate pathway but not FGFR3&4/α-KL in 
the control of  1,25(OH)2D levels in kidney makes this molecule 
ideal foruse as a new the rapeutic in the treatment of  XLH, with 
thepotential to significantly improve bone formation in XLH 
patients with limited safety concerns.39,40

CYP24A1 INHIBITOR

FGF-23 impairs the production of  renal 1,25(OH)2D through either 
inhibiting the expression of  CYP27B1, the enzyme that converts 
25-(OH)D to its active metabolite, or upregulating the expression  
of  vitamin D 24-hydroxylase (CYP24A1), a mitochondrial enzyme 
responsible for inactivating vitamin D metabolites through the C-24 
oxidation pathway.49 In the overexpressing mutant FGF23R176Q 
and Hyp mouse models, hypophosphatemic ricketswith high levels 
of  FGF-23 are also associated with increased renal CYP24A1  
expression, suggesting that elevated CYP24A1 activity is pivotal 
to the pathophysiology of  these disorders.50,51 Knockout of  
CYP24A1 in the Hyp and FGF23R176Q-transgenic miceresulted 
in near-complete recovery of  rachitic bony abnormalities, but 
serum levels of  phosphorus and 1,25(OH)2D did not improve in 
these murine models of  human disease.36 Interestingly, treatment 
of  Hyp and FGF23R176Q-transgenic mice with the CYP24A1 
inhibitor CTA102 also ameliorated their rachitic bones.36 Whether 
pharmacologic inhibition of  CYP24A1 activity goes solo as a 
therapeutic target remains to be further investigated.

FGF-23 ANTAGONIST

In addition to FGF-23 specific antibody and FGF-23 C peptide, 
a computationally identified FGF-23 antagonist (ZINC13407541)
was found to bind to FGF-23 that disrupts its interaction with 
the FGFR/α-KL complex in a heterologous cell expression 
system.41 This FGF-23 antagonist was also shown to inhibit 
FGF-23 signaling in isolated renal tubules ex vivo and to increase 
serum phosphate and 1,25(OH)2D in a mouse model of  FGF-
23-related hypophosphatemic diseases.41 In addition, this FGF-23 
antagonist slightly but significantly reduced FGF-23 levels along 
with increased PTH levels in mouse disease model.41 The findings 
of  small molecule that antagonizes FGF-23 activation of  FGFRs 
provide a new tool to probe the functions of  FGF-23 and set the 
stage for developing clinical drug candidates to treat disorders 
of  excess FGF-23. Furthermore FGF-23 antagonist can be cost-
effective, orally bioavailable and easily dose titration compared 
to the FGF-23 antibody. This small molecule has been using to 
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develop lead compound for preclinical screening and late clinical 
trials.

THE POTENTIAL SIDE EFFECTS OF THESEFGF-23TARGET 
EDTHERAPIES

As shown in Table 1, all of  current FGF-23 targeted therapies 
have their advantages and disadvantages. The FGFR inhibitors 
show a strong inhibition of  FGFR tyrosine kinase activity; these 
compounds can block both the production and end-organ effects 
of  FGF-23, but demonstrate no specificity and potential tissue 
and organ toxicity. In contrast, FGF-23 antibody plays a function 
blocking on FGF-23and displays a high specificity of  treatment. 
However, FGF-23 antibodyneeds parenteral delivery and high cost 
treatment. FGF-23 C-terminal peptides also have a high specificity 
of  treatment, but the increased proteolytic instability during 
treatment would limit its use as a long-time therapeutic strategy.52 
CYP24A1 inhibitor almost completely recover rachitic bone of  
hypophosphatemic disorder, but this compound has no effect on 
levels of  phosphorus and 1,25(OH)2D. FGF-23 antagonist could 
be a promising therapeutic strategy because of  
effective, orally bioavailable and easily dose titration compared 
to the FGF-23 antibody. This small molecule has been using to 
develop lead compound for preclinical screening and late clinical 
trials.

THE POTENTIAL SIDE EFFECTS OF THESEFGF-23TARGET 
EDTHERAPIES

As shown in Table 1, all of  current FGF-23 targeted therapies 
have their advantages and disadvantages. The FGFR inhibitors 
show a strong inhibition of  FGFR tyrosine kinase activity; these 
compounds can block both the production and end-organ effects 
of  FGF-23, but demonstrate no specificity and potential tissue 
and organ toxicity. In contrast, FGF-23 antibody plays a function 
blocking on FGF-23and displays a high specificity of  treatment. 
However, FGF-23 antibody needs parenteral delivery and high 
cost treatment. FGF-23 C-terminal peptides also have a high 
specificity of  treatment, but the increased proteolytic instability 
during treatment would limit its use as a long-time therapeutic 

strategy.52 CYP24A1 inhibitor almost completely recover rachitic 
bone of  hypophosphatemic disorder, but this compound has 
no effect on levels of  phosphorus and 1,25(OH)2D. FGF-23 
antagonist could be a promising therapeutic strategy because of  
its oral bioavailability, dose titratibility, and cost-effective if  the 
optimization overcomes the short half  time of  the compound.

CONCLUSION

Fibroblast growth factor-23 is a circulating hormone that regulates 
phosphate and vitamin D metabolism. Excess actions of  FGF-23 
result in reductions in serum phosphate and 1,25(OH)2D levels 
and hypophosphatemi crickets. Therefore, it is necessary to develop 
therapeutic methods to suppress the activities of  thathorm one. In 
fact, patients with hypophosphatemic disorders by FGF-23 excess 
were reported to benefit from FGF-23 blocking antibodies or 
inhibitors of  FGF-23 signaling.37,53,54 However, these therapies need 
careful monitoring dosing-use because deficient actions of  FGF-
23 result in hyperphosphatemic disease.55,56 Indeed, management 
of  FGF-23 levelsin patients with CKD seems to be debatable since 
modest reductions in FGF-23 with calcimimetics could improve 
survival in patients with ESRD,47 while inhibiting FGF-23 with 
a high affinity blocking antibody increased mortality in CKD,38 
leading to questionable benefit from these novel therapies in CKD. 
However, use of  either low affinity FGF-23 antibody or FGF-23 
inhibitors to control FGF-23 excess actions remains a promising 
therapy for both hereditary and acquired hyperphosphatemic 
diseases.
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