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INTRODUCTION

Stereotactic Body Radiotherapy (SBRT) is a sophisticated form 
of  radiation that allows high dose, conformal radiation delivery 

to solid tumors. In addition to providing local control, reports of  
abscopal (or out-of-field) effects indicate a possible systemic ef-
fect of  SBRT.1,2 Although, clinical reports of  abscopal immune 
responses induced by SBRT are relatively rare,2 recent advances 
in immunotherapy and the potential benefits of  the combination 
of  immunotherapy and SBRT have driven interest in radiation-
induced anti-tumor immune responses. Several clinical studies are 
currently underway to determine the effects of  combined radia-
tionand check-point inhibition.3 Although, results of  clinical tri-

als combining PD-1 inhibition and radiation are still forthcoming, 
clinical reports demonstrate that combination radio-immunother-
apy may yield therapeutic advantage.4,5 While reports suggest that 
hypofractionated regimens used in SBRT may induce superior im-
mune priming, the optimal dose, and fractionation regimens are 
still to be determined.

CASE STUDY

Patient History and Treatment

Here we report a dosimetric characterization of  a possible abscopal 
response in a 57-year-old female with oligometastatic melanoma. 

Recently, preclinical and clinical evidence has shown that a synergy may exist between radiation and immune check-point therapies 
such as pembrolizumab. Radiation has been shown to activate the immune system, and in combination with immunotherapy may 
lead to systemic anti-tumor responses. However, the exact dose regimens needed to induce synergistic responses are unclear. Here, 
we report a dosimetric characterization of  a patient treated with stereotactic radiation in combination with immune check-point 
therapy.
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Patient data was obtained during a retrospective chart review under 
a protocol approved by the Institutional Review Board (IRB) of  
Christiana Care Health Services, Inc., Newark, DE, USA. Previ-
ously, the patient received intensity modulated radiation therapy 
treatment in the management of  her metastatic melanoma to the 
left orbit. She underwent surgical resection followed by post-oper-
ative radiation therapy to the orbit. She completed a dose of  375 
Gy in 15 fractions at 25 Gy per fraction. She was also diagnosed 
at that time with right lateral temporal metastasis and underwent 
radiosurgery. The patient received a dose of  20 Gy to the single 
right temporal metastasis. The patient was placed on maintenance 
pembrolizumab with good response but had a single-site progres-
sion one year later evidenced by increase in size to a right lower 
lobe centrally located oligo-metastasis for which she received pal-
liative CyberKnife® (AccurayInc, Sunnyvale, CA, USA) SBRT. She 
received a dose of  50 Gy in 5 fractions prescribed to the 74% 
isodose line, determined using a Monte Carlo dose calculation 
(Figure 1). At this time, the patient also presented with a rapidly 
enlarging palpable right supraclavicallymph node which demon-
strated  asymmetry with focal hypermetabolic activity on positron 
emission tomography/computed tomography (PET/CT). 

Patient Response

A partial response was noted, approximately 3 months after Cy-
berKnife® treatment, in the irradiated lesion, identified decreased 
hypermetabolic activity and a 50% reduction in  size by PET/CT. 
The patient also developed a systemic response in the previously 
enlarged cervical lymph node which was located out of  the radia-
tion field. The patient reported resolution of  the palpable cervical 
lymph node shortly after radiation treatment. This node was no 
longer clinically palpable when the patient presented for staging 
three months after treatment. A radiological response was also not-
ed. By PET/CT, there was no evidence of  lymphadenopathy with 
the previously enlarged hypermetabolic lymph node now showing 
a reduction in size and no 18F-fluorodeoxyglucose (FDG) activity.

Dosimetric Characterization

Upon review of  the CyberKnife® SBRT plan dosimetric param-

eters, we realized that the dose of  50 Gy in 5 fractions is slightly 
lower than the standard dose for lung lesions of  55 Gy in 5 frac-
tions. Additionally, the planning target volume (PTV) was atypi-
cally colder (89.9% of  PTV covered by the 100% prescription 
dose) with the clinical intent to decrease chances of  bone fracture 
in the ribs. There was also a relatively high value of  gross tumor 
volume (GTV) and a homogeneity index (HI) of  1.35. HI, defined 
as max dose/prescribed dose, is a factor to indicate the degree of  
uniformity of  dose within the target. These findings suggest that 
higher HI may be associated with enhanced immunologic effects 
of  SBRT.

DISCUSSION

Meta-analysis of  preclinical studies has shown that the probability 
of  an abscopal immune response intensifies with increasing bio-
logical effective doses. Furthermore, preclinical studies have sug-
gested that ablative or hypofractionated radiation is superior to 
conventional fractionation schemes for release of  immunostimula-
tory cytokines such as interferon gamma, upregulation of  MHC 
and the activation of  effector CD8+ T-cells.8-13 However, hypofrac-
tionated regimens may also have immunosuppressive effects. Hy-
drofluoric acid (HF) induces severe damage to vasculature and is 
associated with increased hypoxia. Hypoxia not only decreases the 
biological effects of  radiation, but may also promote immunosup-
pression through alterations of  cytokine gradients, recruitment of  
tumor-associated macrophages (TAMS) and increased functions 
of  Tregs.14-16 Likewise, radiation has been shown to induce changes 
in macrophage polarity. While conventional fractionation regimens 
have been shown to promote anti-tumor M1 macrophage polarity, 
HF may result in immunosuppressive M2 differentiation.15,17-18 Ad-
ditionally, there is concern that high doses used in HF may have 
a detrimental effect on existing or infiltrating T-cells as a reduc-
tion in TILs has been observed following single doses higher than 
7-10 Gy.16,19-22 Thus, although SBRT may promote enhanced CD8+ 

T-cell responses, efficacy may be diminished by the death of  infil-
trating lymphocytes and other microenvironmental changes that 
increase immunosuppression. In contrast, conventional doses of  
≤2 Gy per fraction may preserve endogenous and infiltrating tu-
mor reactive T-cells. While conventional fractionation schedules 
may overcome some of  the drawbacks of  HF, doses may not be 
high enough to induce a robust immuneresponse.

 Although, current planning objectives strive for PTV 
coverage over 95% of  the dose prescription with HI <1.2, this case 
study suggests that abscopal effects may be enhanced in patients 
treated SBRT with sub-optimal PTV dose coverage and undergo-
ing concurrent immunotherapy. The inherent high dose gradient 
of  CyberKnife® beam profile (due to the steep dose gradient from 
beam center to edge) might be an important contributing factor 
to the possible response observed here and may contribute to the 
advantage of  CyberKnife® SBRT over standard radiation therapy 
in combination with immunotherapy. The effects of  dose hetero-
geneity on biological attributes such as hypoxia and the immune 
response are unknown. Moreover, the optimal dose and fraction-
ation schedule for synergistic effects of  CyberKnife® with immu-
notherapy are not yet well-defined. In our case, it is unclear if  the 
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Figure 1. Lung Cyberknife case (50 Gy in 5 fractions) with suboptimal tumor coverage 
with (8 o’clock) clinical intent to spare the adjacent ribs to reduce risk of bone fracture. 
PTV: blue line
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slight decrease in dose (50 Gy vs. 55 Gy) had an impact on immu-
nological response patterns. However, the lower dose combined 
with supoptimal tumor coverage may have helped limit hypoxia 
and promote immune responses leading to an abscobal effect in 
this case. Further investigation on the impact of  heterogeneous 
dose delivery on activation of  anti-tumor immune responses is 
needed. Dosimetric characterization of  radiotherapy may help to 
provide information about optimal radiation doses for interactions 
with immunotherapeutics.
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