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ABSTRACT

	 The choice of a model in the analysis of patient health care costs and utilization is 
critical for a clear understanding of the behavior and estimation of quantities like incremental 
costs or cost-effectiveness. In studying heath care claims related to pregnancy, it would not be 
surprising that a small portion of the women have costs associated with their care and treatment 
that might be extreme or outlying. Many strategies exist for accommodating outliers; however, 
is one approach superior to the others because it may be implemented over a broader set of 
conditions without making unreasonable assumptions about the prevailing data characteristics?
In this study, the author will show an example of a data set based on the medical claims for over 
300K pregnant women, aged 15-49, where the traditional, or widely used Generalized Linear 
Model (GLM) approach to modeling costs may be less than optimal due to the presence of 
patients with very large, or very small expenditure values. These values, in some sense “con-
taminate” the typically employed GLM and cause it to violate its underlying requisite statistical 
assumptions. 

	 Finite Mixture Models (FMMs) have been employed in other areas of clinical research 
to model health care utilization. The author will introduce FMMs as an alternative to the com-
monly used GLM model and show that in his example data set, the fit of the FMMs is superior 
for the modeling of maternity expenditures in the presence of extreme or outlying cost values.

KEYWORDS: Maternal health care expenditures; Statistical model; Generalized linear model; 
Gamma distribution; Log link; Outlier; Residual; Finite mixture model; Akaike Information 
Criteria.

ABBREVIATION: GLM: Generalized Linear Model; FMMs: Finite Mixture Models; AIC: 
Akaike Information Criterion.

INTRODUCTION

	 It has been said that “beauty is in the eye of the beholder”, but, so too is an investiga-
tor’s understanding of phenomena a function of the lens that he or she uses to look at data. The 
estimates, inferences and/or conclusions that one draws from data are highly related to the way 
that the data are analyzed, modeled and presented. If an analyst makes a particular assumption 
about the prevailing characteristics of a data set and these conditions are absent, it is to no one’s 
surprise that the subsequent downstream estimates, inferences and conclusions are at best, im-
precise; at worst, erroneous.

	 Which analysis or model one uses to study health care costs has been the subject of 
debate amongst expert analysts in health outcomes research and resulted in numerous recom-
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mendations.1-7 Regardless of the philosophical position that one 
decides to take with respect to the analysis and/or modeling of 
health care costs, a critical part of the endeavor is to study the ad-
equacy of the underlying assumptions that serve as the basis for 
this activity.8,9 Without such an examination, the results derived 
from the data can be open to criticism and skepticism.

	 It has been the experience of the author, after over 26 
years as a data analyst in many diverse areas of biomedical re-
search, that the data characteristics necessary for an analysis or 
model to perform correctly are not frequently studied, but often 
assumed to be true and in some sense “robust” against depar-
tures from said features in the sample or samples. Moreover, it is 
also the author’s contention that the verification of the requisite 
assumptions for an analysis or modeling exercise are often not 
shared with the reviewers and readers of published medical re-
search.

	 A common model used to study total health care costs 
over many disease indications is a generalized linear model 
(GLM), assuming that the log of the mean costs describes the set 
of predictors or covariates in a linear fashion and that a gamma 
probability model adequately describes the distribution pattern 
of the observed data: its central tendency, spread, shape, etc. The 
author has employed such a model under many circumstances 
after checking that its assumptions were appropriate. However, 
what happens if the accepted GLM does not adequately repre-
sent the behavior of the total health care costs under study? Do 
other approaches exist to accommodate these departures for the 
requisite underlying statistical theory?

	 One circumstance where the standard GLM model has 
the potential to perform less than optimally is in the presence 
of extreme cost values, whether it is skewing to the high end 
(right), to the low (left), or in both the upper and lower range 
of the data set (longer “tails”); i.e., in a range than would not be 
reasonably predicted by the model. Such a circumstance can oc-
cur in disease indications where complications and/or particular 
co-morbidity patterns have the potential to increase treatment 
cost and expand the cost range dramatically.10-14 The medical 
and pharmacy claims for women who are experiencing their first 
pregnancy are one such example where complications related 
to pregnancy can produce claims with high costs that expand 
or skew the cost distribution to a degree not anticipated by the 
conventional model.

	 In the face of extreme or outlying values, an analyst 
has a number of practices that he or she may engage in to reduce 
their influence or leverage on the chosen model. One approach is 
to analyze the data with the extreme values in and out of a model 
as a form of “sensitivity” analysis to see how the results vary by 
using these values and then removing them from the analysis. If 
the outlying values greatly influence the modeling results, it is 
common for analysts to examine the data for “assignable cause” 
(i.e., Are these extreme costs related to patients with unusual 
clinical characteristics that set them apart from most of the other 

patients?), subject the extreme values to some form of outlier 
test15 or compare them with a known reference range.16 Any one 
of these approaches can result in a loss of sample size because the 
investigators may decide to discard these patients from consid-
eration after judging their costs relative to a frame of reference 
related to clinical experience (“assignable cause”), a cutoff point 
in a statistical test (outlier test) or a reference range gleaned from 
the related medical literature. This decreased sample size can 
then have downstream effects on the operating characteristics of 
statistical significance tests. Also, the outlying cases may have 
an important place in the context of the investigation, scientifi-
cally.17,18

	 Another approach to managing the outlying or extreme 
values involves the use of robust statistical methods to “down-
weight” their influence.19 These methods are useful if extreme 
values exist in both the lower and upper ranges of the cost distri-
bution. However, techniques like the application of a Winsorized 
or trimmed mean to remove outliers lose their statistical opti-
mality20 (e.g., unbiasedness) when a distribution is asymmetri-
cal, which is often the case for cost data.21-23

	 An approach that may be employed, whether data are 
in the upper, lower, or both extreme ends of the cost range, and 
without having to resort to the removal of patient data from a 
sample is the application of a finite mixture model. A finite mix-
ture model (FMM) consists of two or more underlying assumed 
distributions, such that each contributes to the understanding of 
overall data pattern a specific proportion of the time, with the 
sum of the proportions totaling to 1 or 100%.24,25 For the sake of 
simplicity, suppose that the cost distribution can be described by 
two different probability structures. Then the contribution of one 
is p% (e.g., say, 25%) and the other is (100-p)% (in this example, 
that would be [100-25]% =75%). If f represents the overall prob-
ability density function for the data, it could be described by:
		
                               f = 0.25f1 + 0.75f2,	                  (1)

where f1 and f2 are referred to as “component” probability density 
functions. 

	 To further help the reader develop an intuition for the 
concept, suppose that we have an FMM consisting of underly-
ing component distributions that are bell-shaped, Gaussian or 
normal. Figure 1 shows an example of an FMM, where 25% is 
from a normal with mean = 2.5 and standard deviation = 5 and 
the remaining three-quarters is from a normal with mean = 0 and 
standard deviation = 1.

	 Figure 1 shows an example of a homogeneous mixture. 
It is homogeneous because the two component distributions are 
bell-shaped, Gaussian, or normal. It is also possible to have a 
heterogeneous mixture of two different underlying distributions. 
Figure 2 shows an example of a mixture of 50% normal and 50% 
gamma.
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	 The FMM approach also allows an analyst to perform 
regression modeling; e.g., one could look at a mixture of cost 
values and see how well a set of co-morbidity or demographic 
characteristics predict the mean costs.

	 One the surface, FMM may seem like an interesting 
statistical or mathematical curiosity, but this approach to study 
cost data has been applied with success in various areas of clini-
cal research.26-29 Given that probability of a clinical complica-
tion during pregnancy is not zero, if one were to look at a large 
enough data set, he or she might end up with patients whose 
costs are on the order of millions of dollars. Certainly, such costs 
would exert influence on a regression model where most of the 
costs are within a lower anticipated range.

	 The advantage of the FMM approach is that the analyst 
does not really ever have to worry about whether a value is an 
outlier or not. If sufficient outliers exist, they may be modeled 
as part of a smaller, or minority component distribution in a cost 
model. The burden of examining the values for assignable cause 

is eliminated. Extreme data can occur at the high end, low end, 
or both in the cost range and studied with an FMM without the 
limitations imposed by robust statistical methods such as trim-
ming.

	 The work in this paper is, to the knowledge of the au-
thor, the first application of an FMM to cost data in the setting 
of pregnancy. The author will share an example of a real data 
set that has properties that will demonstrate the benefits of the 
FMM approach when a portion of the costs are extremely low 
and high. These values effectively ruin the fit when standard cost 
models are employed.

DATA SOURCE

	 The data set for analysis consisted of 322,107 pregnant 
women aged 15-49 years using de-identified medical and phar-
macy claims from the Truven Health MarketScan® Commercial 
Claims and Encounters database incurred between January 1, 
2007 and December 31, 2011. The total health care costs were 
calculated from the date of the first pregnancy-related claim 
through to 3 months post-delivery, adjusted to 2011 dollars. 

METHODS

	 The constructed data set was examined for its fidelity 
to a set of assumptions typically used in health care cost models 
that the costs could be adequately modeled with a gamma distri-
bution.30,31 First, the distribution of the costs was fit assuming a 
gamma distribution and compared with a kernel density estimate 
of the data distribution, an approach using more general assump-
tions and not imposing nor assuming a particular form for the 
cost data. A plot containing a histogram with the two superim-
posed distributions was used to make an initial assessment of the 
adequacy of the gamma assumption. Second, these data were fit 
with a small set of co-morbidity predictors and the model residu-
als were subject to an examination for the aptness of the gamma 
assumption a second time and for consideration of the appropri-
ateness of the standard belief that the log of the mean costs could 
be related to the predictors in a linear fashion (i.e., that assum-
ing a log link was plausible). After these two assessments, the 
data were refit using both heterogeneous and homogenous finite 
mixture models to compare their fit with the gamma assumption. 
The models with the lowest Akaike Information Criterion (AIC) 
were considered to be a better fit or description of the observed 
costs.

	 All data analysis, models and graphics were conducted 
using various SAS v 9.4 (TS1M2) procedures. 

RESULTS

	 Figure 3 shows a histogram with two superimposed 
curves. One is a kernel density estimate of the distribution of 
the costs with minimal assumptions about its shape, scale, etc. 

Figure 2: An example of a mixture of two measurements of different component distributions.

Figure 1: An example of a mixture of two normally distributed measurements.
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The second curve was fitted assuming that the costs follow the 
standard assumption that they may be described by a gamma 
probability model. Figure 3a shows the data in its entirety. As 
the presence of patients with costs in the millions of dollars are 
part of the data set, the plot was run a second time with the data 
truncated at $100K. Figure 3b was only created for the sake of 
illustration purposes in this instance.

	 Figure 3b illustrates the main shortcoming of the choice 
of a gamma distribution for use as a cost model in this setting. 
The blue curve in Figure 3b is how an assumed gamma distri-
bution would fit if it were used to describe the maternal cost 
data. Note that if an analyst were to use this model for these data 
the assumed distribution would over-predict how often the costs 
were on the lower and higher ends of the distribution and under-
predict how often the costs would be around the mode, or most 
frequent value.

	

	 The initial plausibility of the appropriateness of the 
standard cost model is somewhat in doubt. The other feature of 
the standard model assumes that the predictors may be adequate-
ly described by a linear relationship with the log of the mean 
costs. In a GLM this assumed relationship is called the “link” 
between the mean costs and predictors. In Figure 4 the model 
was fit with a small set of 9 binary co-morbidity variables (pres-
ence v absence) and the assumption was checked by a special 
type of plot called a cumulative residual plot. Details regarding 
the statistics and construction of the plot may be found in other 
sources.32,33 The main point of this plot is that the behavior of the 
actual data (dark blue solid curve – indicated by solid arrows) 
should fall within a set of bounds found (dashed, lighter blue 
region) by re-sampling the cost data several times. For the most 
part, the actual data do well and fall within the bounds, with the 
exception of the area in the purple-shaded boxes.

	

	 Now, consider a simple approach to correct the short-
comings of the gamma and log link model. A standard regression 
technique is to try and look at the log of each patient’s individual 
costs. A plot of the distribution of the log-transformed costs is 
shown in Figure 5.

	 In Figure 5 the log costs have been plotted and a su-
perimposed kernel and normal curve were drawn over the data. 
The log transformed data that roughly follow a normal or bell 
curve are called log normally distributed data. This approach 
suffers from the similar problems to the gamma model; however, 
the pattern of over-estimation is reverse (for smaller values, the 
white area between the blue and red curves is larger on the left-
hand side than was the case for the assumed gamma model in 
Figure 3b).

	 The short comings of these two models suggest that 
some heterogeneity exists in the cost data; viz., a single prob-
ability model or distribution will not adequately describe the 
behavior of the entire data set. Let’s now attempt to fit an FMM 
to see if the description of such a model is superior to the ones 

Figure 4: Cumulative residuals for a model assuming a log link.

Figure 3a: A first look at the maternity total cost data.

Figure 3b: A second look at the maternity total cost data – Truncated at $100K.
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previously employed.

	

	 Figure 6 consists of various FMM fit to the maternal 
cost data on the log scale. First attempts were with homoge-
neous FMMs. Recall that a homogeneous FMM consists of two 
or more probability models or distributions, but only differing 
in the values of their parameters, like the example in Figure 1 
where both are bell-shaped curves, only differing in their means 
and standard deviations. 

	 In Figure 6 the fitted model appears to be superior to 
that of the earlier single gamma or normal distributions (the lat-
ter fit on the log-transformed data). Using a SAS® procedure 
called PROC FMM, the results suggest that the first component 
(slightly larger mean, variance about 10x as larger) describes 
about 90% of the mixture, while another component describes 
the remaining 10%. 

	

	 Figure 7 shows attempts to use various heterogeneous 
FMMs to describe the data. Only two component models were 
fit for this analysis.

	

	 After examining Figures 6 and 7 it seems that all of 
these models are an improvement over the standard models, vi-
sually. Indeed, comparing one plot with another seems like an-

Figure 5: The distribution of the log-transformed costs.

Figure 6: Homogeneous FMM fit to the maternal cost data using two normal distributions.

Figure 7a: A heterogeneous mixture of a normal and log-normal probability model.

Figure 7b: A heterogeneous mixture of a normal and gamma probability model.

Figure 7c: A heterogeneous mixture of a normal and gamma probability model.
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other “beauty contest” to find the best model. Fortunately, an 
analyst may use a statistic to differentiate between the models 
for a more objective choice.

	 The Akaike Information Criteria34 (AIC) is a statistic 
that is often used to compare various models and their fit to data. 
Crudely, the AIC is a measure of the balance between under-
fitting a data set versus over-fitting by using too large of a num-
ber of parameters or a more complex model.35,36 The AIC may 
be thought of as the sum of two quantities: the lack of fit for the 
model and a “penalty” for potential unreliability introduced by 
a more complicated model.37 In a set of competing models, the 
model with the lowest AIC is considered to be the optimal one; 
in the context of FMM, AIC may be used to guide the selection 
of an optimal model.38 Table 1 shows the AIC values for some 
models considered for the fit of the maternal cost data.

	 By virtue of the AIC values, the homogeneous FMM 
based on the log costs assuming two underlying normal prob-
ability models would seem like the best model to describe the 
maternal costs.

DISCUSSION

	 Modeling a phenomenon involves the process of reduc-
ing it down to a set of features by detail abstraction and assum-
ing that underlying conditions persist. Thus, for cost data, the 
analyst assumes a probability model that, in itself, describes the 
behavior of the cost data distribution and presumes that it has a 
specific shape, scale, or other characteristics that may be read-
ily identifiable, mathematically (i.e., may be specified by a for-
mula). When an analyst picks a model without checking its ad-
equacy, he or she is imposing features on the data or “viewing it 
through a lens” that might distort reality because of assumptions 
that cannot be supported upon closer examination of the data. 
All estimates and inferences derived under these faulty or un-
checked assumptions can be imprecise, or in error, respectively.
For medical indications where a great deal of underlying het-
erogeneity exists, FMMs have been shown to more adequately 

describe the data characteristics and reflect the reality of the cost 
data than standard models. The author contends that their appli-
cation in the study of costs related to pregnancy may be another 
area where the FMM approach more adequately describes the 
data, especially if specific medical complications exist and occur 
infrequently, but often enough to undermine the appropriate use 
of a more traditional, single distribution or probability model. 
His study is a first case analysis of the potential for FMMs in 
modeling of costs in gynecology and obstetrics.

	 In an age when increasing health care costs are falling 
under greater scrutiny by payers, a sensible starting place for 
greater understanding is to check the way that data are used to 
make estimates of incremental costs or cost-effectiveness. Are 
the results derived from a model based on a defensible or ratio-
nal approach that is faithful to the features of the data? Are the 
prevailing conditions observed in the clinical environment ad-
dressed in the model? Equipped with the appropriate tools, the 
analyst is allowed to share a more accurate vision of the behav-
ior of costs associated with pregnancy, which may lead to a more 
precise estimates of incremental costs or cost-effectiveness, and 
ultimately, serve the best interests for the treatment and care of 
pregnant women.
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Model Model Type AIC

Gamma on Untransformed Costs Traditional Single Probability Model 6690934

Normal on Log-Transformed Costs Traditional Single Probability Model 531525

10% Normal(mean=9.53, variance=1.59) + 90% Normal(mean=0.15, variance =0.15) 
on Log-Transformed Costs

Homogeneous FMM 459427

92% Normal(mean=9.50, variance=0.16) + 8% Gamma(intercept=2.25, scale= 44.04) 
on Log-Transformed Costs

Heterogeneous FMM 461699

98% Normal(mean=9.51, variance=0.21) + 2% Exponential(intercept=2.18) on Log-
Transformed Costs

Heterogeneous FMM 484566

26% Normal(mean=9.9, variance=0.35) + 74% Weibull(intercept=2.26, scale=0.04) on 
Log-Transformed Costs

Heterogeneous FMM 481570

Table 1: AIC values comparing single, homogeneous and heterogeneous FMMs.
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