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ABSTRACT

Spongiosis is the hallmark of eczematous dermatitis. The mechanism underlying it is somewhat 
complex and is not fully understood up till now. Many factors interplay to produce spongiosis. 
One of these factors is Fas receptor/Fas ligand interaction.
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ABBREVIATIONS: DSC: Desmocollins; DSG: Desmogleins; ECAD: E-cadherin; EPLIN: 
Epithelial Protein Lost in Neoplasm; IC: Intercellular; KCs: Keratinocytes; RCM: Reflectance 
Confocal Microscopy.

DEFINITION

Spongiosis is a process in which intercellular edema between the squamous cells of the epider-
mis causes an increase in the width of the spaces between them, separating the malphigian cells 
with stretching and eventually rupture of the intercellular prickles, and accentuation of honey-
combed morphology of the upper epidermal layers appears accentuated, resulting in a sponge 
like appearance of the tissue (hence the name spongiosis).1,2

 Another feature frequently observed is vesicle formation, which—either focal or 
widespread in extent—is seen on reflectance confocal microscopy (RCM) as well-demarcated 
that appear as dark hollow spaces between granular and spinous keratinocytes (KCs). Often 
small round, weakly refractile cells may be seen in the center of vesicles and microvesicles, 
these may correspond to apoptotic KCs or inflammatory cells.1

 Exocytosis is regularly associated with spongiotic dermatitis, whereby the inflam-
matory cells are seen on RCM as bright, round highly refractile structures of about 8-10 mm, 
interspersed between KCs. Inflammatory cells may also be observed to various extents in peri-
follicular, perivascular or interstitial dermal distribution.1

MECHANISM

Spongiosis is a characteristic histopathologic appearance in eczematous dermatitis.3,4 It entails 
condensation of KCs with widening of the intercellular (IC) spaces, IC edema and distention of 
the remaining IC contacts which give the epidermis a ʻsponge-likeʼ appearance. IC adhesion is 
normally anchored by desmosomes and adherens junctions.5

Fluid Accumulation

The two reasonable possibilities for the source of accumulated fluid in the intercellular space: 
(1) from the epidermal cells or (2) from the dermal fluids which arise, in turn, from the vessels. 
The epidermal cells alone cannot account for all the fluid, which is obvious in that an extremely 
spongiotic epidermis (e.g., a blister of contact dermatitis) often assumes a greater volume than 
the initial epidermis. If we accept that most of the fluid comes from the dermis, then why does 
that fluid accumulate in the epidermis.6
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 There are two hypotheses for epidermal spongiosis 
fluid accumulation: (1) the fluid is pushed there by dermal hy-
drostatic pressure (due to decrease in the osmotic pressure of 
the dermis), or (2) the fluid is pulled there by epidermal osmotic 
pressure (due to increase in the osmotic pressure of inter-KCs 
space). In both cases a permissive basement membrane is as-
sumed. The first possibility is clearly not operative; for under 
conditions in which there is massive dermal edema (increased 
dermal hydrostatic pressure), such as in urticaria or erythema 
multiforme, bullous formations often result in the upper dermis 
before any spongiosis is appreciable in the epidermis.7

 While this mechanism may play a role in some situ-
ations, it is easier to visualize the epidermal cell as the agent 
influencing this process. The KC may respond to injury actively, 
for example, by altering its membrane cation pump, favoring an 
outflow of ions. A review of the cell physiology literature yields 
some experimental data from frog skin studies, suggesting that 
stratum spinosum cells may pump sodium ions into the epithe-
lial interspaces,8 and enough sodium salt may be transported into 
the interspaces to keep them expanded.9

 
 In one report when sodium transport was stimulated, 
the IC spaces widened, and when sodium transport was inhibited 
by ouabain or dinitrophenol, the intercellular spaces closed.10 A 
passive mechanism can also be hypothesized. Permeability of 
the KC plasma membrane could increase (e.g., from cell death), 
with leakage of cytoplasmic protein. This in turn would pull flu-
ids to the inter-KC area.6

Detachment of Cells 

Specific adhesiveness of KCs is provided by homophilic inter-
actions of the cadherin superfamily.11,12 Adherens junctions an-
chor actin microfilaments and contain E-cadherin (ECAD) as 
their transmembrane glycoprotein. The intracellular segment of 
ECAD associates with α-catenin, β-catenin, and ɤ-catenin (plak-
oglobin) .12 Although, central to cellular adhesion, cadherins dis-
play physiologic functions beyond the mechanical interconnec-
tion of cells. It has been suggested that cadherins play a crucial 
role in regulatory pathways involved in various aspects of cell 
fate including developmental decisions, cell differentiation, and 
cell survival.13

CADHERINS

Cadherins are a superfamily of adhesion molecules that mediate 
Ca²+ dependent cell-cell adhesion in all tissues of that determine 
tissue architecture and control cell contact formation and dis-
sociation during development, tissue homeostasis of all meta-
zoans.14

This superfamily involves: Classical cadherins that are the major 
component of cell-cell adhesive junctions, desmogleins (DSG), 
desmocollins (DSC), protocadherins and some other cadherin-
related molecules (e.g., The Fatprotein of Drosophila). Expres-
sion of particular cadherins often correlates with formation of 

discrete tissue structures, and in mature tissues discrete cell lay-
ers or other cell assemblies are often demarcated by particular 
cadherins.15

 The majority of members of the cadherin superfamily 
are transmembrane glycoproteins that pass the membrane only 
once. The N- and C-termini of the cadherin protein chain are 
located outside and inside the cell, respectively.16

 Classical cadherins contain five cadherin domains that 
are commonly designated as extracellular1 (EC1)-extracellular5 
(EC5) (beginning with the N-terminus of the molecule). The 
conformation of the cadherin molecule is stable only in the pres-
ence of Ca2+, whose binding with the EC portion of the polypep-
tide chain is prerequisite for cadherin-mediated cell-cell adhe-
sion.17 Removal of Ca2+ leads to a disordering of interdomain 
orientations, as can be seen by electron microscopy,18 increased 
sensitivity to proteolysis, and increased motion between succes-
sive domains.19

THE EXTRACELLULAR DOMAIN (EC)
 
EC portion of the cadherin molecule consists of a varying num-
ber of so-called cadherin domains that are highly homologous 
to each other. Each domain is comprised of approximately 110 
amino acid residues. EC cadherin domains per seared capable of 
hemophilic recognition and binding. It was shown that cells that 
express mutant cadherins lacking the cytoplasmic domains can 
bind with substrate covered with purified cadherin ectodomains. 
However, in this case adhesion is much weaker than in the case 
of cells bearing full-size cadherins.17,20

The Cytoplasmic Domain

The cytoplasmic region of classical cadherins, roughly 150 
amino acids long, is the most highly conserved portion of these 
proteins. The juxta-membrane region binds to p120, and the 
carboxy-terminal ca. Hundred amino acids bind to β-catenin 
and to plakoglobin. Sequences homologous to the β-catenin/
plakoglobin-binding region are also present in the desmosomes. 
The cytoplasmic domain of classical cadherins is associated 
with the cytoplasmic proteins catenins, which, in turn, serve as 
intermediate linkers between the cadherins and actin filaments. 
These data indicate that the formation of stable cell-cell junc-
tions depends on the presence of functionally active cytoplasmic 
domain in the cadherin molecule and association of the latter 
with the cytoskeleton. Deletion of the cytoplasmic domain or 
the catenin-binding site suppresses stable cadherin-mediated 
adhesion of cultured cells.17 Alternatively, over expression of 
the catenin-binding site also entails disruption of cell-cell junc-
tions. This could be explained by competition of the expressed 
catenin-binding site with the endogenous cadherin for catenin 
binding.21 

The Role of Cadherins in Mechanotransduction

Cadherins require anchoring to the cytoskeleton for properad-
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hesive function and junction organization. This is mediated by 
the catenins, a class of cytosolic proteins that were identified 
as cadherin-associated proteins necessary for cell adhesion.22 
Catenins form a protein family that is characterized by the ar-
madillo repeat. Cadherins bind with their C-termini to β-catenin 
that in turn binds to α-catenin. The cadherin-catenin complex is 
connected via α-catenin with actin filaments, an interaction that 
may not be direct,23 and might require further bridging proteins 
such as epithelial protein lost in neoplasm (EPLIN) or vinculin.24

Regulation of Cadherin Activity

Cadherin-mediated adhesion can be regulated by a variety of 
extracellular signals, including growth factors,25 peptide hor-
mones26 signals from gap junctions and cholinergic receptor 
agonists.27

 In response to these external stimuli, different signals 
are generated in the cell, of which protein phosphorylation is ap-
parently, the most important for the regulation of cadherin func-
tion.28

  
 Another mechanism of regulation of cadherin activity 
is changing the extent of clustering of cadherin molecules in the 
junction area which can significantly affect the strength of cell-
cell interaction.29

Implications and Indications of Cadherins in Diseases

1) Cancer: Mutations that lead to a loss of ECAD, may play a 
role in cancer as found in laryngeal squamous cell carcinoma.30

Down-regulation or loss of cadherins correlates with an in-
creased metastatic potential of the affected cells due to the loss 
of their adhesive properties.31

2) Renal fibrosis is associated with downregulation of ECAD in 
kidney fibrosis.32

3) Cerebral cavernous malformation may be accompanied by 
irregular distribution of vascular endothelial-cadherin (VE-cad) 
and upregulation of N-cadherin in endothelial cells.33

4) Pemphigus vulgaris is associated with autoimmune disease 
directed against DSG1 and DSG3.34

5) Arrhythmogenic cardiomyopathy is associated with muta-
tions in DSG2 and DSC2 in humans.35

6) Cognitive disorders and neurosensory diseases may be as-
sociated with protocadherin dysfunction.36

Loss of Cell Cohesion in Eczematous Dermatitis

Recently, it has been found that T-cell-mediated KC apopto-
sis plays a key pathogenic role in the formation of eczematous 
dermatitis. Spongiosis, the histologic hallmark of eczematous 
dermatitis, is characterized by impairment of cohesion between 
epidermal KCs. It is conceivable that the intercellular junction of 
KCs is an early target of apoptosis-inducing T-cells. It has been 
demonstrated that the induction of KC apoptosis is accompanied 
by a rapid cleavage of E-cad and loss of β-catenin. In situ ex-
amination of ECAD expression and cellular distribution in acute 

eczematous dermatitis revealed a reduction in KC membrane 
ECAD in areas of spongiosis. In contrast, the in vitro and in 
vivo expression of desmosomes during early apoptosis remained 
unchanged. Therefore, induction of KC apoptosis by skin-in-
filtrating T-cells, subsequent cleavage of ECAD, and resisting 
desmosomes suggests a mechanism for spongiosis formation in 
eczematous dermatitis.5

 The development of spongiosis is initiated by early KC 
apoptosis due to cell shrinkage and cleavage of ECAD, which is 
essential in mediating KC cohesion. It has been found that im-
pairment and loss of KC cohesion constitute the primary event 
in spongiosis formation. Therefore, despite being the obvious 
driving force of spongiosis formation, fluid influx into the skin 
is apparently not the primary step, but rather the end result of a 
sequence of pathogenic events. Accordingly, dermal inflamma-
tion and intense fluid influx into the dermis in urticaria leave 
skin coherence totally intact.37

 In contrast, in early lesions of bullous autoimmune skin 
diseases in which desmosomes are targeted by auto-antibodies, 
spongiosis is visible. It should be noted here that spongiosis 
is a nonspecific sign of cutaneous inflammation involving the 
epidermis. It is found in all kinds of eczemas, in bullous skin 
diseases, and in some viral and superficial fungal infections as 
well.38

 Spongiosis takes place mainly in the spinous layer of 
the epidermis. The heterogeneous basal layer contains stem 
cells, transit amplifying cells, and postmitotic differentiating 
cells with high expression of integrins.39 It seems that in the 
basal layer at least stem cells exhibit strong anti-apoptotic de-
fenses.40 In contrast to adherens junctions that may contain only 
ECAD, desmosomes always include cadherins from two sub-
families, Dsg and Dsc.41

 
 It has been demonstrated that apoptosis-induced pro-
tein cleavage in KCs is selective for certain adherens junction 
and desmosomal proteins. E-cad was cleaved, whereas β-catenin 
and desmosomal cadherins were not. The functional properties 
of ECAD and desmosomal cadherins are distinct despite their 
overall structural homology.5

 The most striking sequence difference between Dsc, 
Dsg, and ECAD lies in their cytoplasmic tails.42 This may con-
tribute to the selectivity of the cytoplasmic tails for different 
plaque proteins connecting them with different cytoskeletal fila-
ments. These differences may also account for the differential 
behavior of desmosomal cadherins and E-cad in KC apoptosis. 
In the spongiotic epidermis of eczematous dermatitis, not all 
KCs go into apoptosis. Therefore, it is likely that in areas of 
intense spongiosis there is additional cleavage of cadherins on 
by standing KCs without ongoing apoptosis possibly due to pro-
teinases released from secondary necrotic KCs.5

 E-cad acts as a substrate for activated caspases during 
KC apoptosis and its cleavage was inhibited by caspase inhibi-
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tors. These caspase inhibitors were also able to abrogate T-cell-
induced KC apoptosis at the same concentration that blocked 
caspase-mediated cleavage events. Because of high levels of 
glycosylation of cadherins, several potential caspase cleavage 
sites, and different antibody epitopes.5

 It was demonstrated that the cleavage site of ECAD 
during apoptosis is proximal to the transmembrane domain in 
the cytoplasm. At the 24 h time point the 85 kDa cleavage prod-
uct was not consistently detectable, suggesting that further deg-
radation may also occur.43

CONCLUSION

To summarize; T-cells infiltrating the skin in eczematous derma-
titis induce KC apoptosis.44 The early apoptotic response of KCs 
is characterized by cleavage of ECAD, whereas desmosomal 
cadherins remain intact. Hydrostatic pressure, which is an im-
portant factor in the development of spongiosis, and the portions 
of the epidermal cell surface that still retain desmosomes may 
explain the elongation and distortion of remaining IC contacts 
observed in histopathology.5
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