Short Communication

*Corresponding author
Steven R. Lindheim, MD, MMM
Professor of Obstetrics and Gynecology
Director
Division of Reproductive Endocrinology and Infertility Miami Valley Hospital
128 Apple Street
Suite 3800 Weber CHE Dayton
OH 45409, USA
Tel. (937) 208-2301
Fax: (937)222-7255
E-mail: steven.lindheim@wright.edu

Volume 2 : Issue 5
Article Ref. #: 1000GOROJ2126

Changing the Algorithm in the Evaluation of Pelvic Anatomy in the Infertile Patient: Is Hysterosalpingo Contrast Sonography With Saline-Air Device the Appropriate Test for Everyone?

Kathryn Coyne, MS1; Thomas C. Winter III, MD2; Rose Maxwell, PhD2; Steven R. Lindheim, MD, MMM2*

1Department of Obstetrics and Gynecology, Wright State University, Boonshoft School of Medicine, Dayton, OH, USA
2Department of Radiology, University of Utah, Salt Lake City, UT, USA

The evaluation of the fallopian tubes is an essential part of the infertility workup, with abnormalities related to the fallopian tubes accounting for up to 40% of female subfertility.1 Laparoscopy is still considered the gold standard in the diagnostic evaluation of fallopian tubes, though the hysterosalpingogram (HSG) has long been recognized as complementary to laparoscopy, since tubal anatomy can be distinctly be seen.2 That said, previous investigations using laparoscopy as the gold standard demonstrate HSG has a sensitivity and specificity of 53% and 87%, respectively, for bilateral tubal pathology.3

In last few years, there has been a move away from these methods and towards the use of Hysterosalpingo Contrast Sonography (HyCoSy). Laparoscopy mandates regional or general anesthesia and incurs significant operative costs and risks.4 In contrast, while HSG obviates the need for hysteroscopy and/or laparoscopy, it is associated with exposure to ionizing radiation and the need for iodinated contrast material.5-8 While HyCoSy has been advocated as an alternative to the HSG since the 1980s, its use in evaluating tubal patency has been limited as the normal fallopian tube is a poor sonic reflector, devoid of the defined interfaces that produce clear organ outlines.9-11 Various agents to enhance transvaginal ultrasound visualization of the fallopian tubes have been described; however, given storage issues, expense, and lack of FDA approval, it has obviated their routine use in the office setting. Others have substituted a mixture of saline and/or air for more elaborate distending media: some vigorously shake a syringe of saline and air creating air bubbles immediately before infusion, while others have described filling a syringe with both air and saline and tilting the syringe with the intermittent infusion of air followed by saline in increments of 1-3 mL.12-14 Recently, the FDA approved saline-air devices, which create and deliver a constant alternating pattern of saline and air as a continuous stream in a controlled fashion allowing for fallopian tube evaluation under ultrasound guidance.15

The allure of the HyCoSy-saline-air device (HyCoSy-SAD) is that: 1) it is a relatively quick and non-invasive procedure that can be done in the office setting and does not require exposure to ionizing radiation; 2) a number of studies, including a meta-analysis, have demonstrated concordance rates of 83% to 100% and a diagnostic accuracy of 65% to 85% between HyCoSy-SAD, laparoscopy, and HSG in establishing tubal patency when detecting tubal pathology2,8-19; and 3) the low cost of air and saline solutions makes this particular HyCoSy procedure attractive to determine tubal patency (price points range from USD 10-40 for the SIS catheter and USD 90-150 for the saline-air device).

However, caution needs to heeded when embracing new technology and discarding gold standards. Work by our research team concurs with reports from other investigators that

Citation

Copyright
©2016 Lindheim SR. This is an open access article distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
indicate a high degree of concordance with HSG when using a HyCoSy-SAD to detect tubal patency; however, the converse is not true with respect to tubal occlusion. Indeterminate or inconclusive studies using the HyCoSy-SAD tend to be associated with patients with cervical stenosis, as air bubbles are less likely to traverse the cervix and ascend upwards towards the fallopian tubes, and with diminished ovarian reserve, where smaller ovaries may make it harder to track the air-bubbles. In our experience, there is nearly a two times greater likelihood of incorrectly reading a fallopian tube as occluded on HyCoSy-SAD, and between 5-10% of seemingly normal HyCoSy-SAD studies are identified as phimotic or having loculated spill on HSG. Unlike the distinct tubal anatomy seen with the HSG, distinct tubal architecture cannot be delineated with HyCoSy-SAD unless a hydrosalpinx is seen on ultrasound.

Perhaps before we leap to the HyCoSy-SAD as a first-step procedure of choice in the assessment of tubal patency, we should consider creating an algorithm and triaging patients based upon risk factors (Figure 1). The HSG should be considered in patients with cervical stenosis and without easily apparent ovaries. Other risk factors for an unsuccessful HyCoSy-SAD study to be considered should be severe dysmenorrhea (indicating possible endometriosis and/or pelvic adhesions) and uterine fibroids, which make identification of the uterine cornua and ovaries challenging (Figure 2). While the HyCoSy-SAD allows for the simple delivery of saline and air as a continuous stream in a controlled fashion, further refinement with proper patient selection may advance this procedure as a useful first-line modality in the evaluation of tubal patency and reduce the false positives and negative studies.

CONFLICTS OF INTEREST: None.

REFERENCES


