The Histamine H_4 Receptor: A Novel Target for Safe Anti-inflammatory Drugs?

Maristella Adami* and Gabriella Coruzzi1

Department of Neuroscience, University of Parma, Via Volturno 39, 43125 Parma, Italy
*retired

ABSTRACT

The functional role of histamine H_4 receptors (H_4Rs) in the Gastrointestinal (GI) tract is reviewed, with particular reference to their involvement in the regulation of gastric mucosal defense and inflammation. H_4Rs have been detected in different cell types of the gut, including immune cells, paracrine cells, endocrine cells and neurons, from different animal species and humans; moreover, H_4R expression was reported to be altered in some pathological conditions, such as colitis and cancer. Functional studies have demonstrated protective effects of H_4R antagonists in several experimental models of gastric mucosal damage and intestinal inflammation, suggesting a potential therapeutic role of drugs targeting this new receptor subtype in GI disorders, such as allergic enteropathy, Inflammatory Bowel Disease (IBD), Irritable Bowel Syndrome (IBS) and cancer.

KEYWORDS: Histamine H_4 receptor; Stomach; Intestine.

ABBREVIATIONS: CNS: Central Nervous System; GI: Gastrointestinal; H_3Rs: H_3 Receptors; H_4Rs: H_4 Receptors; IBD: Inflammatory Bowel Disease; IBS: Irritable Bowel Syndrome; IL-6: Interleukin-6; NSAIDs: Nonsteroidal Anti-inflammatory Drugs; TNBS: Trinitrobenzene Sulphonic Acid; TNF-α: Tumour Necrosis Factor-alpha; UC: Ulcerative Colitis.

INTRODUCTION

After the discovery of histamine H_1 receptors and their revolutionary role in the therapy of gastroduodenal ulcer,1-3 the research on Gastrointestinal (GI) histamine was considered to be settled. However, renewed interest in the amine emerged in the ’90s with the discovery of the histamine H_3 receptor (H_3R),4,5 and subsequently, in the early 2000 when the H_4 receptor (H_4R) was detected from the human genome database by several independent groups.6-8 As a consequence, novel therapeutic fields have been unravelled for antihistamine drugs: whereas histamine H_3R antagonists may represent new therapeutic options for cognitive, sleep and memory disorders,6-8 and for obesity,9 H_4R antagonists are currently the object of intensive research, as potential candidates in the therapy of allergy, inflammatory disorders, neuropathic pain and pruritus.7,11,12

The present review will focus on the location and functional role of H_4Rs in the GI tract and the potential clinical implications for human diseases. Beneficial effects of H_4R blockers at GI level would be of particular interest, when considering that the available Nonsteroidal Anti-inflammatory Drugs (NSAIDs) are still endowed with significant gastric and intestinal toxicity.13-14 This is particularly true for the still unrecognized NSAID-induced enteropathy, which occurs frequently and still awaits for medical treatment.15-16
THE HISTAMINE H₄R

The H₄R is a G-protein coupled receptor which has been primarily detected outside the Central Nervous System (CNS), and, in particular, in immune and inflammatory cells, including mast cells, eosinophils, basophils, dendritic cells and T cells. This has led to hypothesize for the H₄R a key role in inflammation and immunoregulation. Indeed, a variety of in vitro data have shown that H₄Rs are involved in the control of chemotactic response and cytoskeletal changes of human eosinophils, mast cell chemotaxis and release of interleukin-16 from human CD8⁺ T cells and dendritic cell migration. Functional in vivo studies in rodents have confirmed anti-inflammatory, antihyperalgesic and antiallergic effects of selective H₄R antagonists in a variety of acute and chronic experimental models.

HISTAMINE H₄R LIGANDS

Since H₃R and H₄R are closely related, the early physiopharmacological characterization of the H₄R was based on compounds retaining the ability to bind the H₃R subtype. The first selective H₄R antagonist was the indolylpiperazine compound, JNJ7777120, which displayed high affinity (Kᵢ = 4 nM) for the human H₄R with and a >1000-fold selectivity over the other histamine receptors, thus becoming the “reference” H₄R ligand in most experimental assays, also due to the lack of highly selective H₃R antagonists. To complicate matters, the subsequent availability of chemically different H₄R ligands showed that several compounds could display a protean activity, behaving as full agonists, partial agonists or actually neutral antagonists, depending on the functional assay. Indeed, some pharmacological discrepancies have recently emerged: H₄R activation, rather than blockade, was found to display anti-inflammatory or protective effects, and on the other hand, the “standard” H₄R antagonist JNJ7777120 was found to behave as an agonist in some experimental assays.

The use of non selective compounds (i.e. mixed H₃/H₄ receptor ligands) and the occurrence of strain-dependent effects of H₄R ligands may further contribute to an erroneous interpretation of experimental data and make the characterization of H₄R function a great challenge for histaminologists. Human studies are therefore highly recommended. Unfortunately, so far, only few compounds have entered into clinical trials: JNJ-39758979 in phase II for itch and asthma, ZPL-38937887 (PalauPharma) in phase I, UR-63325 (PalauPharma) in phase I with excellent safety and profile.

LOCATION OF H₄Rs IN THE GI TRACT

H₄R expression was found widespread throughout the GI tract of different animal species and humans. As shown in Table 1, the expression was unraveled both in normal tissues and under pathological conditions, such as esophagitis and colitis; a decrease in H₄R density was reported in human gastric and colorectal carcinoma. Cell types expressing H₄R include immune and inflammatory cells, epithelial cells and neurons of the myenteric and submucous plexus. Interestingly, H₄R expression was found in ghrelin-producing cells of the rat stomach, leading to speculation about a possible role of histamine in the secretion of the orexigenic peptide.

<table>
<thead>
<tr>
<th>Tissue</th>
<th>Normal/Pathological</th>
<th>Species</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oesophagus</td>
<td>eosinophilic esophagitis</td>
<td>guinea pig</td>
<td>36</td>
</tr>
<tr>
<td>Stomach</td>
<td>normal</td>
<td>rat</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>normal</td>
<td>human</td>
<td>38, 39</td>
</tr>
<tr>
<td></td>
<td>carcinoma</td>
<td>human</td>
<td>39</td>
</tr>
<tr>
<td>Small intestine</td>
<td>normal</td>
<td>mouse</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>normal</td>
<td>rat</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>normal</td>
<td>dog</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>normal</td>
<td>human</td>
<td>38, 43, 47</td>
</tr>
<tr>
<td>Colon</td>
<td>spontaneous colitis</td>
<td>mouse</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>TNBS colitis</td>
<td>mouse</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>normal</td>
<td>rat</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>normal</td>
<td>dog</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>normal</td>
<td>pig</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>normal</td>
<td>monkey</td>
<td>52, 53</td>
</tr>
<tr>
<td></td>
<td>normal</td>
<td>human</td>
<td>44, 47, 54, 55</td>
</tr>
<tr>
<td></td>
<td>carcinoma</td>
<td>human</td>
<td>54-56</td>
</tr>
</tbody>
</table>

| Table 1: Expression of histamine H₄Rs in the GI tract |

GI EFFECTS OF H₄R LIGANDS

The functional data reported in intact animals with the available H₄R antagonists are summarized in Table 2.

<table>
<thead>
<tr>
<th>Pathological condition</th>
<th>Species</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indomethacin-induced gastric damage</td>
<td>rat, mouse</td>
<td>57, 58</td>
</tr>
<tr>
<td>TNBS-induced colitis</td>
<td>rat</td>
<td>59-61</td>
</tr>
<tr>
<td>Zymosan-induced peritonitis</td>
<td>mouse</td>
<td>19, 21, 24, 62-64</td>
</tr>
<tr>
<td>Radiation-induced intestinal damage</td>
<td>rat</td>
<td>65</td>
</tr>
<tr>
<td>Ischemia-induced intestinal damage</td>
<td>rat</td>
<td>66</td>
</tr>
<tr>
<td>TNBS-induced visceral hypersensitivity</td>
<td>rat</td>
<td>67</td>
</tr>
</tbody>
</table>

| Table 2: Protective effects of histamine H₄R antagonists in the GI tract |

In rodents the reference H₄R antagonist JNJ7777120 was unable to damage the gastric mucosa per se, even at the highest anti-inflammatory doses and, actually, it was able to reduce the gastric damage induced by indomethacin in two models which are widely used to unravel either gastric damage or protection. The gastroprotection induced by H₄R blockade was unrelated to antisecretory effects or alteration in GI motility; moreover, it was found to differ from that induced by activation of H₃Rs, since it was not evidenced against necrotizing agents, such as concentrated acid. Indeed, the extensive damage induced by concentrated acid (>0.35 N) is only prevented by “true” cytoprotective drugs,
like prostaglandins or by mechanisms activating cellular defense, such as re-epithelization and cell proliferation. It is thus more plausible to hypothesize a selective interference of H₄R antagonists in the widely recognized mechanism underlying NSAID-induced gastric damage, i.e. accumulation and activation of neutrophils in the gastric microvasculature. In line with this, in several experimental models of intestinal damage, H₄R antagonists were able to reduce neutrophil infiltration in intestinal mucosa.

The protective effect reported by Varga et al. in a model of acute colitis induced by Trinitrobenzene Sulphonic Acid (TNBS) seems deemed of interest, when considering that this assay resembles the human Crohn’s disease under macroscopic, histopathological and immunological aspects. In this assay, JNJ7777120 was able to reduce macroscopic damage, neutrophil infiltration and the production of both Tumor Necrosis Factor-α (TNF-α) and Interleukin-6 (IL-6), two cytokines that play a critical role in the pathogenesis of human disease. Several groups have underlined the increase in histamine content in mucosal biopsies from Crohn’s disease, Ulcerative Colitis (UC) and food allergy; moreover, mast cells in colonic mucosal biopsies from IBS patients were found to release more histamine than in normal subjects. The recent observation that histamine H₄Rs, together with H₁Rs, contribute to the postinflammatory visceral sensitivity in the TNBS-induced colitis assay, leads to hypothesize that H₄R antagonists may be of therapeutic value in various pathological conditions with abdominal pain.

Finally, a possible role of histamine H₄Rs in cancer has been recently reviewed. Recent studies have evidenced the presence of H₄Rs in gastric and colorectal tumor cells and a reduction of H₄R density has been observed, which parallels the cancer progression. However, functional data with histamine and H₄R ligands are contradictory, with both stimulation and/or inhibition of cell proliferation and cell growth being observed.

CONCLUSIONS

The protective effects displayed by some H₄R antagonists in a variety of experimental in vivo models suggest that histamine H₄R blockade is not deleterious for the GI tract and can actually activate gastric and intestinal mucosal defense mechanisms, at least in rodents. Despite these favourable premises, H₄R pharmacology is still intriguing and clinical studies are mandatory in order to assess the potential benefit of H₄R antagonists in human GI disease. A careful validation of experimental assays, ligand selectivity and antibody specificity is of key importance to unravel the location and functional role of H₄Rs in the GI tract, and the therapeutic value of drugs targeting this receptor in the human pathology.

ACKNOWLEDGEMENTS

The work is part of the EU FP7 COST Action BM0806: Recent advances in histamine receptor H₄ research.REFERENCES

41. Chazot PL, Shenton FC, Waldvogel H, Grandi D, Morini G. The H4 histamine receptor is expressed in both the human CNS and rodent PNS. In: European Histamine Research Society, 36th Annual Meeting, Florence (Italy), May 9-12th, 2007: 27.

