Coronary CT Angiography in Coronary Artery Disease: from Diagnosis to Prevention

Zhonghua Sun¹ and Cheng-Hsun Lin²*

¹Discipline of Medical Imaging, Department of Imaging and Applied Physics, Curtin University, GPO Box U1987 Perth, Western Australia 6845, Australia
²Department of Medical Imaging and Radiological Science, Central Taiwan University of Science and Technology, Taichung, Taiwan

Review

*Corresponding author
Chenghsun Lin, PhD
Associate Professor
Department of Medical Imaging and Radiological Science
Central Taiwan University of Science and Technology
666, Putsi Road, Peitun District
Taichung, 40601, Taiwan
Tel. +886-422394072
Fax: +886-422393305
E-mail: jslin@ctust.edu.tw

ABSTRACT

Coronary CT angiography has emerged as a reliable imaging tool for the diagnosis of coronary artery disease. Coronary CT angiography has the ability to demonstrate excellent visualization of anatomical changes in coronary artery with high diagnostic value in the detection of lumen stenosis or occlusion, and characterization of coronary plaque composition. Furthermore, coronary CT angiography offers prognostic value in the prediction of adverse cardiac events. Although coronary CT angiography is limited to the assessment of coronary anatomy and lumen changes, coronary CT angiography-derived computer modeling and hemodynamic analysis has the potential to evaluate functional significance of coronary artery disease. This review article aims to provide an overview of both diagnostic and prognostic value of coronary CT angiography in coronary artery disease. Limitations of coronary CT angiography are briefly discussed, while functional assessment of coronary artery disease with use of coronary CT angiography-generated coronary artery models is highlighted.

KEYWORDS: Coronary artery disease, Coronary computed tomography angiography, Diagnosis, Plaque, Prognosis.

INTRODUCTION

There is a growing body of evidence supporting the fact that Coronary CT Angiography (CCTA) is a well-established imaging modality in the diagnosis of Coronary Artery Disease (CAD) due to its less invasiveness, high diagnostic value, and widespread accessibility. Diagnostic accuracy of CCTA has been significantly improved with technological advancements in multislice CT scanning techniques, which are represented by the development from early generation of 4-slice CT to 64-slice, dual-source CT and recently available 320-slice CT. It has been reported that CCTA has a very high negative predictive value, thus enabling it as a reliable screening tool in patients with low or intermediate risk of CAD. This is clinically important as unnecessary invasive coronary angiography or other examinations can be avoided in patients with a normal CCTA. Furthermore, CCTA has the potential to visualize coronary artery wall and plaque morphology, characterize atherosclerotic plaques and identify non-stenotic plaques that may be undetected by invasive coronary angiography. Findings of CCTA are closely related to the clinical outcomes with very low rate of adverse cardiac events occurring in patients with normal CCTA, but with significantly high rates of these events in patients with obstructive CAD.

Despite these promising reports, one limitation of CCTA lies in the high radiation dose which has been well addressed by recently introduced dose-reduction strategies.
Although CCTA has superior spatial resolution which allows excellent visualization of coronary artery tree and reliable detection of coronary wall changes, another limitation of this technique is that it is still limited to the assessment of morphological changes, but fails to provide functional significance of coronary stenosiss. Although recent studies suggest that cardiac CT myocardial perfusion is feasible and provides functional significance of CAD, the diagnostic accuracy suffers from high false positive findings. This has been overcome with the use of hemodynamic analysis of blood flow to coronary artery based on numerical simulation using computational fluid dynamic techniques. The purpose of this review is to provide an overview of CCTA in CAD, with a focus on the diagnostic and prognostic value. Limitations of CCTA in CAD are discussed while the current research developments with use of CCTA-derived coronary models for simulation of hemodynamic changes are highlighted.

DIAGNOSTIC VALUE OF CCTA IN CAD

The diagnostic value of CCTA in CAD has been significantly augmented with the development of multislice CT scanners and Electrocardiography-Gated (ECG) scanning technique over the last decades. According to several systematic reviews and meta-analyses of 64-slice CCTA studies in the diagnosis of CAD, the sensitivities were more than 97% and specificities were more than 87% in most of the studies. These analyses indicate that CCTA has high diagnostic value in the detection and characterization of CAD due to presence of plaques (Figure 1).

Currently, 320-slice CT represents the recently technological developments in imaging coronary artery disease with good results achieved. Expansion of multislice CT systems from a 64-slice to 320-slice system has allowed for the accurate assessment of stenosiss severity and atherosclerotic plaque composition, or even the acquisition of whole-heart coverage in one gantry rotation. Two recently reported systematic reviews and meta-analyses further confirmed the high diagnostic accuracy of 320-slice CCTA. The diagnostic sensitivity was similar to that reported in the 64-slice CCTA, but the specificity was higher in 320-slice CCTA than in 64-slice CCTA studies, indicating the high value of 320-slice CCTA for excluding coronary artery stenosis. However, it has to be recognized that diagnostic performance of 320-slice CCTA is similar to that of 64- and 128-slice for the determination of ≥50% coronary artery stenosis due to its limited temporal resolution, despite improved extended z-axis coverage.

Prospectively ECG-triggered CCTA scan (also called step-and-shoot mode) is triggered by the ECG signal and x-ray tube is only turned on at the selected cardiac phase (diastolic), and turned off during the rest of the cardiac cycle. A significant dose reduction with high image quality has been reported in studies performed with prospectively ECG-triggered CCTA (Figure 2).

Four systematic reviews and meta-analyses of studies on the use of prospectively ECG-triggered 64-or more slice CCTA reported that the mean patient-based sensitivities and specificities ranged from 99% to 100%, and 89% to 92%, respectively, which is similar to those reported with use of retrospectively ECG-gated CCTA, but with resultant much lower radiation dose. Table 1 summarizes the diagnostic value of these systematic reviews and meta-analyses of studies performed with CCTA in CAD.

PROGNOSTIC VALUE OF CCTA IN CAD

CCTA can detect non-obstructive and non-calcified plaques as well as plaques with positive remodeling, both of which play an important role in the pathophysiology of acute myocardial infarction and may be indicative of vulnerable plaques, which are closely related to the development of major adverse cardiac events.
Goldstein et al. in their multicenter study consisting of 700 patients with acute chest pain symptoms further verified the relationship between CCTA findings and prognostic value of cardiac events.53 Min et al. in their CONFIRM (Coronary CT Angiography Evaluation for Clinical Outcomes: An International Multicenter Registry) trial evaluated a consecutive cohort of 24,775 patients with suspected CAD who were enrolled at 12 international centers.64 Their results along with others showed that a significant increased risk in adverse cardiac events was observed in patients with CCTA-identified obstructive CAD but with much lower event rates in patients with normal CCTA findings.54,55,56,57 These results indicate that CCTA could serve as an independent predictor of major adverse cardiac events in patients with suspected CAD, although more studies based on large cohort with long-term follow-up are needed.

LIMITATIONS OF CCTA

Despite rapid technological improvements in CT scanning techniques, CCTA has limitations in the following areas. Firstly, it is a technique with associated high radiation dose which raises concerns in the medical field as there is potential risk of radiation-induced malignancy. With increasing applications of CCTA in the diagnosis of CAD, the research focus has shifted from the previous emphasis on diagnostic value of CCTA to the current focus on reduction of radiation dose with acceptable diagnostic image quality. Using many of the technologies and dose-reduction strategies, it is possible to lower the dose to less than 5mSv, where doses of less than 1mSv is already achievable with the current CT models, which is lower than that of invasive coronary angiography.8,9,17,20,58-60,61,62 Thus, significant progress has been made over the last decade to lower radiation dose resulting from CCTA.

Secondly, although CCTA allows a comprehensive evaluation of coronary plaques in terms of coronary lumen changes and characterization of plaques (calcified vs non-cal...
cified), it is unable to determine which plaques are ‘vulnerable’ or unstable versus those which are stable.63,64 Therefore, differentiation of lipid-rich content from fibrous content with CCTA remains challenging due to considerable overlap in the attenuation values of lipid and fibrous tissue. Intravascular ultrasound is the gold standard for the assessment of coronary plaque composition and progression in clinical studies.65,66 Furthermore, extensive coronary artery calcification (coronary calcium score >400) still limits the diagnostic accuracy of CCTA, in particular lowering the sensitivity to some extent due to false positive results, and this is being addressed with improvements in CT imaging.67,68

Thirdly, CCTA has superior spatial resolution which allows it to demonstrate excellent visualization of coronary lumen change, however, it has limited value in the diagnostic evaluation of myocardial ischemia. The presence of anatomic lesions does not necessarily correlate with functional significance of CAD, which refers to decreased myocardial perfusion.69 Studies comparing coronary lesions detected on CCTA with ischemia as documented on myocardial perfusion imaging have shown that CCTA has limited diagnostic value (about 50%) for assessment of abnormal myocardial perfusion in patients with more than 50% coronary stenosis when compared to cardiac ischemia which was confirmed by Single Photon Emission Computed Tomography (SPECT).70,71 Therefore, SPECT is regarded as the first line diagnostic test for cardiac ischemia.69,72 Table 2 is a summary of characteristics between cardiac SPECT and CCTA in the diagnostic evaluation of CAD.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>CCTA</th>
<th>Cardiac SPECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnostic accuracy</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Prognostic value</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Impact on patient management</td>
<td>Uncertain</td>
<td>Yes</td>
</tr>
<tr>
<td>Assessment of response to therapy</td>
<td>Uncertain</td>
<td>Yes</td>
</tr>
<tr>
<td>Contribution to better outcomes</td>
<td>Uncertain</td>
<td>Yes</td>
</tr>
<tr>
<td>Widespread availability</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Applicable in a wide spectrum of patients</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Low radiation dose to patients</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Cost-effectiveness</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 2: Characteristics of cardiac SPECT and CCTA (modified from reference 72)

CCTA-DERIVED HEMODYNAMIC ANALYSIS

Despite the potential limitations of CCTA in the assessment of hemodynamic significance of anatomic coronary lesions, functional assessment of CAD is an area of active research. In recent years, Computational Fluid Dynamics (CFD) has been increasingly used in the diagnostic evaluation of CAD, with the aim of elucidating the role of hemodynamics in coronary artery disease development and progression, and detecting ischemia-causing coronary lesions.25-28,74 Promising results have been achieved with use of CFD in patient-specific models for diagnosis of coronary artery disease (Figure 4).25-28,75-77 Although further technical developments of CFD methods and image processing techniques are required to verify these findings.

Recently, there has been an increasing interest in the investigation of diagnostic performance of non-invasive Fractional Flow Reserve (FFR) derived from CCTA (FFRCT). Computation of FFRCT is performed by CFD modelling after segmentation of coronary arteries and left ventricular myocardium. 3D blood flow simulations of the coronary arteries are performed with blood modelled as a Newtonian fluid using incompressible Navier-Stokes equations, with implementation of appropriate initial and boundary conditions to the models using a finite element method on a supercomputer.25,28 The FFRCT ratio is obtained by dividing the mean pressure distal to the coronary stenosis by the mean aortic pressure, which can be measured during CFD simulations. An FFR of ≤0.80 is currently used as a cut off value to determine coronary stenoses responsible for ischemia (Figures 5 and 6).78,79

Figure 4: Computational fluid dynamic analysis of the effects of coronary plaques on left coronary blood flow. The velocity patterns inside left coronary bifurcation are demonstrated due to presence of plaque locations with eight types of bifurcation plaques and normal condition during the systolic phase (0.2 s) (A) and diastolic phase (0.7 s) (B). Type O-normal coronary artery tree with no plaque present, plaques involving only the left main stem (type A), involving both left anterior descending (LAD) and left circumflex (LCx) (type B), involving left main stem and LAD (type C), involving left main stem, LAD and LCx (type D), involving proximal left main stem and LCx (type E), involving distal left main stem and LCx (type F), involving LAD only (type G) and LCx only (type H). Reprint with permission from ref (28).

Figure 5: Fractional flow reserve (FFR) derived from CT angiography (FFRCT) results for 66-year-old man with multivessel coronary artery disease but no lesion-specific ischemia. (A) Coronary computed tomography angiography (CCTA) demonstrating stenosis in the left anterior descending coronary artery (LAD). (B) FFRCT demonstrates no ischemia in the LAD, with a computed value of 0.91. (C) Invasive coronary angiography (ICA) with FFR also demonstrates no ischemia in the LAD, with a measured value of 0.89. (D) CCTA demonstrating stenosis in the left circumflex coronary (LCx) artery. (E) FFRCT demonstrates no ischemia in the LCx, with a computed value of 0.91. Reprint with permission from ref (78).

Figure 6: FFRCT results for 66-year-old man with multivessel CAD and lesion-specific ischemia. (A) coronary CT angiography(CCTA) demonstrating stenosis in the left anterior descending coronary artery (LAD). (B) FFRCT demonstrates ischemia in the LAD, with a computed value of 0.64. (C) Invasive coronary angiography (ICA) with FFR also demonstrates ischemia in the LAD, with a measured value of 0.72. (D) CCTA demonstrating stenosis in the left circumflex (LCx). (E) FFRCT demonstrates ischemia in the LCx, with a computed value of 0.61. (F) ICA with FFR also demonstrates ischemia in the LCx, with a measured value of 0.52. Reprint with permission from ref (78).
Clinical validation of FFRCT is based on a direct comparison to measured FFR during invasive coronary angiography. Currently, there are three multicenter trials, namely DISCOVER-FLow (Diagnosis of Ischemia-Causing Coronary Stenoses by Noninvasive FFR Computed from Coronary Computed Tomographic Angiograms), DeFACTO (Determination of Fractional Flow Reserve by Anatomic Computed Tomographic Angiography) and NXT (NeXtTeps) investigating the diagnostic value of FFRCT in CAD. On a per-patient analysis, diagnostic sensitivity and specificity of FFRCT ranged from 86-90% and 54-79%, while on a per-vessel analysis, diagnostic sensitivity and specificity of FFRCT were 84% and 86-88%, respectively. Despite the promising results of FFRCT in the detection of flow-limiting coronary stenosis, more multicenter trials need to be performed to compare the clinical impact of FFRCT guided versus standard diagnostic evaluation on clinical outcomes, costs and quality of life in patients with suspected coronary artery disease.

SUMMARY AND CONCLUDING REMARKS

Coronary CT angiography has developed as reliable less-invasive imaging modality in the diagnosis of coronary artery disease. Tremendous progress has been made over the last decades in the technological improvements in cardiac CT imaging, thus enabling coronary CT angiography to become a potential alternative to invasive coronary angiography in selected patients. With current CT scanning techniques, coronary CT angiography demonstrates high diagnostic value in coronary artery disease in terms of anatomic lumen assessment. Functional evaluation of significance of coronary stenosis is improving with latest CT models, such as dual-source or dual-energy CT, although the diagnostic accuracy is still inferior to the myocardial perfusion imaging by SPECT. Coronary CT angiography-derived hemodynamic studies and FFRCT show promising clinical outcomes in the diagnostic evaluation of patient-specific lesions. This represents a new research direction in the analysis of cardiovascular hemodynamics and prediction of coronary disease progression. With more research being conducted using advanced cardiac CT imaging techniques and fast computer processing algorithms, it is expected that research findings will provide potential value for improving our understanding of coronary artery disease with regard to pathogenesis and associated complications, thus achieving the goal of early detection of coronary artery disease and prevention of development of major adverse cardiac events.

REFERENCES

78. Taylor CA, Fonte TA, Min JK. Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve: Scientific basis. J Am Coll Cardiol. 2013; 61: 2233-2241. doi: 10.1016/j.

