New Strategies for Tracing Foodstuffs: Biological Barcodes Utilising PCR-DGGE

Aly Farag El Sheikha

1Faculty of Agriculture, Department of Food Science and Technology, Minufiya University, 32511 Shibin El Kom, Minufiya Government, Egypt
2Faculty of Science, Department of Biology, Al-Baha University, PO Box 1988, Al-Baha, Saudi Arabia

ABSTRACT

Traceability of foods is undertaken primarily at the administrative level, and the use of advanced analytical tools is rare. Nevertheless, the determination of geographical origin is a demand of the traceability system for the import and export of foodstuffs (UE regulation 178/2002). It is hypothesised that foodstuffs can be traced at source by analysing food sample microbial communities after they have been exported. For this purpose, rDNA profiles generated by PCR-DGGE may be used to detect variability in microbial community (bacteria, yeast, fungi) structures inherent to fish, fruits and grains. This is an emerging traceability tool that imprints food with a unique biological bar code and makes it possible to trace food to its original location. In addition, this analytical technique provides a means to monitor and fully understand the ecology of mycotoxin producing fungi.

KEYWORDS: Traceability; PCR-DGGE; Microbial communities; Foodstuffs; Food safety.

INTRODUCTION

Food traceability is a growing consumer concern worldwide. In view of the difficulties involved in installing documentary systems in developing countries and in following foodstuffs through the production process, one possible approach is to identify and validate molecular fingerprinting based on the food’s environment to assure traceability. Currently, there are no analytical methods available that permit the efficient determination of foodstuff origin or that allow them to be followed during international trade. In case of doubt or fraud, it is necessary to find a precise and fast analytical technique to assign geographical origin.1

The most popular analytical methods used to ensure the determination of origin are bar codes and stable isotopes.2 Stable isotopes are currently used for reference by the EU to determine origin of wine.3 It thus seems difficult to use fruit genomic markers to ensure the traceability of Shea tree fruits. However, the skin of fresh fruits is not sterile and can carry microorganisms or their fragments. The presence of various microorganisms depend on the external environment of the fruit (soil ecology, spoilage, insects, diseases), but microorganisms also result from human activity.4 The use of molecular biological methods in general or by PCR-DGGE in particular have been described.5 These tools may be used to deliver reliable results in an efficient and acceptable manner to determine the origin of food products.

WHY DOES THE NEED ARISE TO USE MOLECULAR TECHNIQUES TO TRACE FOODSTUFFS?

In past years, the development of biological identification technologies has contributed to the industry’s ability to support and validate traceability systems. In parallel, computer technology has provided the industry with many new and innovative tools with which to trace...
products. Biological, analytical and informatics tools have been synergistically proposed and utilised for traceability in the wine industry. Currently, there are no molecular biological techniques available to determine the geographical origin of food. The idea was to create a “biological barcode” based on the analysis of the DNA of microorganisms present on the products. This method is based on the assumption that the microbial communities found on foodstuffs are specific to a geographical area.

LINKAGE BETWEEN TRACEABILITY AND FOOD SAFETY

Recently, tracking and tracing systems have become the most important methods used to ensure food safety, whereas food safety is an intrinsic part of food quality. A reliable traceability system means that a tool can allow a food company to track and trace any foodstuff which does not meet consumer expectations or the applicable regulations in an importing country. The main objective of a traceability system is to tell a product’s story, i.e., identify a unique product batch and the raw materials used in its production and follow that batch through its production and distribution all the way to the retailer. Today, tracking and traceability software tools are of major interest to the retail business (as a business to business communication tool). Tracking and traceability systems can be incorporated into information systems where consumers can receive information on any product. Traceability systems enable efficient product recall and allow fewer products to be recalled. This can bring important cost savings, where the aim is to provide consumers with nutritious and healthy products which are produced in a cost-efficient way.

WHY PCR-DGGE?

The Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE) is a well-established molecular tool in environmental microbiology which allows for the study of complexity and behaviour of microbial ecology. The PCR-DGGE is capable of providing a fingerprint of the microbial community in a food sample after direct DNA extraction (Figure 1). Briefly, a food sample is subjected to DNA extrac-

Figure 1: How PCR-DGGE works step by step with food samples.
tion, with the attainment of a mixture containing DNA from the microbial species that is present in the sample. Successively, the DNA mixture is used as a template for PCR amplifications of specific variable DNA regions of taxonomic interest by obtaining an amplified product that is a mixture of amplicons from the species present in the initial sample. All amplicons are of the same size but with different sequences, and can be thus separated by DGGE. The final result is a fingerprint that is specific to the analysed sample and contains a series of bands relative to the microbial species that is present. Identification of the species can be achieved by purifying and sequencing the bands in the DGGE profile.1,12 The most commonly employed target for PCR amplification prior to DGGE is the ribosomal DNA. This is because ribosomal DNA is considered the most conserved gene in all cells inclusive of variable regions.13 The technique is reliable, reproducible, rapid, inexpensive and capable of analysing a large number of samples in a single step. DGGE is applied to the study of microbial diversity and can be coupled with techniques of cloning and subsequent sequencing.14 The PCR-DGGE has the advantage that separation does not depend on the size of the fragment, but rather on the melting behaviour of the PCR product. DGGE is more discriminating than is Restriction Fragment Length Polymorphism (RFLP).15 In addition, the banding pattern obtained from the PCR products is indicative of different species,16 or species assemblages,14 and allows visualisation of the genetic diversity of microbial population indices to quantify biodiversity,17,18 and it has the potential to find new noncultural microorganisms.19 One of the characteristics of strong DGGE is the ability to identify community members by sequencing and by re-amplifying bands excised directly from gels or by hybridisation analysis with specific probes,18,20 which is not possible with RFLP.18,20 Despite these limitations, DGGE is strongly preferred and is considered one of the best techniques for monitoring the microbial community of foodstuffs in a comprehensive, rapid and reproducible manner.5,8,22-25

APPLICATIONS OF PCR-DGGE TECHNIQUE IN THE TRACEABILITY OF FOODSTUFFS

For this purpose, molecular techniques employing rDNA profiles generated by PCR-DGGE were used to detect the variation in microbial community (bacteria, yeast, fungi) structures of fish,11,26-29 fruits,1,12,30-34 salt,15 cheeses,36 grains,37-39 and organic and conventional foods.40 These studies demonstrated that microbial communities were specific for each location, allowing for the foodstuffs to be differentiated. Several microbial species were identified as potential biological markers, whose detection could be used to certify the origin as well as the mode of production of the foodstuff.

PCR-DGGE Technique in the Traceability of Fish

Analysis of bacterial communities in fish samples has often been investigated using culture dependent methods and culture-independent methods by Random Amplified Polymorphic DNA (RAPD).41 Aquatic microorganisms are known to be closely associated with the physiological status of fish.26,41-43 The water composition, temperature and weather conditions can influence the bacterial communities.44,45 The predominant microbial flora (i.e., bacteria, yeast) would permit the determination of the capture area, production process or hygienic conditions during post-harvest operations, yet there are very few published works that provide an analysis of the microbial communities in fish samples by PCR-DGGE and differentiate geographical location.26-29

PCR-DGGE Technique in the Traceability of Fruits

Fruits are included in the priority list of many governments’ horticulture and fruit export plans.34 For economic reasons and for profitability, batches of fruits representing various species or various cultures could be mixed. It is thus very difficult to check their exact geographical origin. Traceability is only assured by rigorous labelling and administrative documentation without proper analytical control. In case of doubt or fraud, it is necessary to find a precise and rapid analytical technique to determine their geographical origin.31 The PCR-DGGE method of analysis is a unique way to generically identify all microbial flora (bacteria, yeast, moulds) present on fruit, in order to create the linkage of microbial communities to the geographical origin and avoid the individual analysis of each strain. The acquired band patterns for the microbial communities of different species of fruits and different harvesting locations were compared and analysed statistically to determine the fruit geographical origin.30-33 Figure 2 shows the DGGE pattern of the DNA of yeast communities of Shea tree fruits from two different regions of Mali, while figure 3 illustrates the cluster analysis of the DGGE gel patterns, which explains that the DGGE pattern of the DNA of yeast communities of Shea tree fruits was strongly linked to the microbial environment of the fruit.36

PCR-DGGE Technique in the Traceability of Grains

As an example, coffee could be attacked by pathogenic microorganisms (including mycotoxigenic fungi) which could have a serious impact on coffee quality.47 The presence of various microflora depends on the external environment of the coffee (soil ecology, spoilage, insects, diseases), but also on microbial communities brought about by human activity.4 Unwanted microbial species or various cultures could be mixed. It is thus very difficult to check their exact geographical origin. Traceability is only assured by rigorous labelling and administrative documentation without proper analytical control. In case of doubt or fraud, it is necessary to find a precise and rapid analytical technique to determine their geographical origin.31 The PCR-DGGE method of analysis is a unique way to generically identify all microbial flora (bacteria, yeast, moulds) present on fruit, in order to create the linkage of microbial communities to the geographical origin and avoid the individual analysis of each strain. The acquired band patterns for the microbial communities of different species of fruits and different harvesting locations were compared and analysed statistically to determine the fruit geographical origin.30-33 Figure 2 shows the DGGE pattern of the DNA of yeast communities of Shea tree fruits from two different regions of Mali, while figure 3 illustrates the cluster analysis of the DGGE gel patterns, which explains that the DGGE pattern of the DNA of yeast communities of Shea tree fruits was strongly linked to the microbial environment of the fruit.36

PCR-DGGE has proven to be a rapid and effective method that can be used to describe fungal communities on coffee beans.53 This confirms the idea put forward by Laforgue et al.54 who showed that PCR-DGGE was an effective and quick
Figure 2: DGGE Profiles of 26S rDNA for yeast strains isolated from Shea tree fruits from two different regions of Mali: Ségou region (D1, D2: Daelan sites) and Sikasso region (N1, N2: Naféguésites).

Figure 3: Cluster analysis of 26S rDNA profiles for yeast strains isolated from Shea tree fruits from two different regions of Mali: Ségou region (D1, D2: Daelan sites) and Sikasso region (N1, N2: Naféguésites).
method to follow food product fungal communities. Nganou et al. used PCR-DGGE to permit the certification of coffee origin by using 28S rDNA fingerprinting of moulds.

CONCLUSIONS: CHALLENGES AND PROSPECTS

Universal scientific methods for the determination of geographical origin of a foodstuff do not, in fact, exist. There are only indirect methods available, which often must be coupled together to increase their accuracy. Methods which permit the analysis of the micro environment of food are very promising and must be better studied by research teams around the world. PCR-DGGE is strongly preferred and considered one of the best techniques for monitoring the microbial communities associated with food samples in a comprehensive, rapid and reproducible manner. Also, by PCR-DGGE, it is demonstrated that there is a link between the microbial populations and the geographical area of origin of the foodstuff. So, this method is proposed to be an analytical traceability tool for foodstuffs.

The main problem will be the construction of the data banks that are necessary for the PCR-DGGE technique. Other techniques will be developed in the near future, taking into account, for example, the micro-constitution of food. One could consider the micro-components of lipids like to cophersols, phosholipids, sterols or other molecules brought into the environment, like pesticides, traces of insects, heavy metals, radioactive isotopes, et al.

REFERENCES

